VGGNet训练时使用了4块Geforce GTX Titan GPU并行计算,速度比单块GPU快了3.75倍。每个网络耗时2~3周才可以训练完。(数据库ImageNet)
from datetime import datetime
import tensorflow as tf
import math
import time
def conv_op(input_op,name,kh,kw,n_out,dh,dw,p):
# 卷积核 (kh,kw,n_out)-高、宽、通道数
# 步长 (dh,dw)
# p 参数列表
n_in = input_op.get_shape()[-1].value #获取输入的通道数
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+'w',
shape=[kh,kw,n_in,n_out],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op,kernel,(1,dh,dw,1),padding="SAME")
bias_init_val = tf.constant(0.0,shape=[n_out],dtype=tf.float32)
biases = tf.Variable(bias_init_val,trainable=True,name='b')
z = tf.nn.bias_add(conv,biases)
activation = tf.nn.relu(z,name=scope)
p += [kernel,biases]
return activation
def fc_op(input_op,name,n_out,p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape=[n_in,n_out],
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1,shape=[n_out],dtype=tf.float32),name='b')
activation = tf.nn.relu_layer(input_op,kernel,biases,name=scope)
p += [kernel,biases]
return activation
def mpool_op(input_op,name,kh,kw,dh,dw):
return tf.nn.max_pool(input_op,
ksize=[1,kh,kw,1],
strides=[1,dh,dw,1],
padding='SAME',
name=name)
def inference_op(input_op,keep_prob):
p=[]
conv1_1 = conv_op(input_op,name='conv1_1',kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
conv1_2 = conv_op(conv1_1,name='con1_2',kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)
pool1 = mpool_op(conv1_2,name='pool1',kh=2,kw=2,dh=2,dw=2)
conv2_1 = conv_op(pool1,name='conv2_1',kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
conv2_2 = conv_op(conv2_1,name='con2_2',kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)
pool2 = mpool_op(conv2_2,name='pool2',kh=2,kw=2,dh=2,dw=2)
conv3_1 = conv_op(pool2,name='conv3_1',kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
conv3_2 = conv_op(conv3_1,name='con3_2',kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
conv3_2 = conv_op(conv3_1,name='con3_2',kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)
pool3 = mpool_op(conv3_2,name='pool3',kh=2,kw=2,dh=2,dw=2)
conv4_1 = conv_op(pool3,name='conv4_1',kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv4_2 = conv_op(conv4_1,name='con4_2',kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv4_2 = conv_op(conv4_1,name='con4_2',kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
pool4 = mpool_op(conv4_2,name='pool4',kh=2,kw=2,dh=2,dw=2)
conv5_1 = conv_op(pool4,name='conv5_1',kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv5_2 = conv_op(conv5_1,name='con5_2',kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
conv5_2 = conv_op(conv5_1,name='con5_2',kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)
pool5 = mpool_op(conv5_2,name='pool5',kh=2,kw=2,dh=2,dw=2)
shp = pool5.get_shape()
# shp.shape --- [batch_size,h,w,d] 0:batch_size 1:高 2:宽 3:通道
flattened_shape = shp[1].value * shp[2].value * shp[3].value
reshl = tf.reshape(pool5,[-1,flattened_shape],name='reshl')
# 隐含节点数4096
fc6 = fc_op(reshl,name='fc6',n_out=4096,p=p)
fc6_drop = tf.nn.dropout(fc6,keep_prob,name='fc6_drop')
#fc7
fc7 = fc_op(fc6_drop,name='fc7',n_out=4096,p=p)
fc7_drop = tf.nn.dropout(fc7,keep_prob,name='fc_drop')
# fc8
fc8 = fc_op(fc7_drop,name='fc8',n_out=1000,p=p)
# softmax
softmax = tf.nn.softmax(fc8)
predictions = tf.argmax(softmax,1)
return predictions,softmax,fc8,p
def time_tensorflow_run(session,target,feed,info_string):
# 预热
num_step_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_step_burn_in + num_batches):
start_time = time.time()
_ = session.run(target,feed_dict=feed)
duration = time.time() - start_time
if i >= num_step_burn_in:
if not i % 10:
print('%s: step : %d, duration = %.3f'
% (datetime.now(),i-num_step_burn_in,duration))
total_duration += duration
total_duration_squared += duration*duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn*mn
sd = math.sqrt(vr)
print('%s:%s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(),info_string,num_batches,mn,sd))
def run_benchmark():
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([batch_size,
image_size,
image_size,
3],
dtype=tf.float32,
stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
predictions,softmax,fc8,p = inference_op(images,keep_prob)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
time_tensorflow_run(sess,predictions,{keep_prob:1.0},'Forward')
# objective = tf.nn.l2_loss(fc8)
# grad = tf.gradients(objective,p)
# time_tensorflow_run(sess,grad,{keep_prob:0.5},'Backward')
batch_size = 32
num_batches = 100
run_benchmark()