- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- Spark MLlib 特征工程系列—特征转换VectorSizeHint
不二人生
Spark实战spark-ml机器学习spark
SparkMLlib特征工程系列—特征转换VectorSizeHintVectorSizeHint是Spark提供的一个特征转换器,用于指定向量列的大小(即维度)。在一些特征转换和建模过程中,要求输入的向量必须有固定的大小。当数据中包含不同大小的向量时,Spark可能无法自动推断出向量的正确大小。这时,VectorSizeHint可以显式地声明向量的大小,确保后续的操作能够顺利进行。为什么需要使用
- 【机器学习】特征提取 特征降维
de-feedback
机器学习人工智能
特征工程特征工程是将原始数据转化为可以用于机器学习的数字特征,比如字典的特征提取,文档的特征提取等。字典特征提取把字典的每个唯一的键作为数据集特征的一个维度,有这个维度的就为1,没有就是0。其他相同的键,该维度的值就是其键值。这样的操作把字典样本的每一条数据转化为了矩阵,但是矩阵中含有大量的0(因为数据中的键和值有很多不同),所以称之为稀疏矩阵为了保存数据的高效,一般使用三元组表存储。保存非零数据
- 【机器学习】特征工程的基本概念以及LASSO回归和主成分分析优化方法
Lossya
机器学习回归人工智能算法特征工程
引言特征工程是机器学习中的一个关键步骤,它涉及到从原始数据中提取和构造新的特征,以提高模型的性能和预测能力LASSO(LeastAbsoluteShrinkageandSelectionOperator)回归是一种用于回归分析的线性模型,它通过引入L1正则化(Lasso正则化)来简化模型并减少过拟合的风险主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术
- AutoML原理与代码实例讲解
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AutoML原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着数据量的爆炸式增长和算法的日益复杂,机器学习在各个领域的应用越来越广泛。然而,机器学习模型的开发过程往往需要大量的专业知识和经验。数据预处理、特征工程、模型选择、参数调优等步骤都需要人工进行,这使得机器学习模型的开发变得复杂且耗时。为了解决这
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 【机器学习】探索数据矿藏:Python中的AI大模型与数据挖掘创新实践
C_GUIQU
机器学习人工智能python
前言:探索数据矿藏1.数据获取与预处理:AI大模型的燃料1.1数据获取:多样性与规模并重1.2数据清洗与处理:提升数据质量1.3特征工程:挖掘数据的深层次信息1.4自动化特征工程:AI与特征工程的结合2.模型训练与优化:构建智能的大脑2.1模型选择:大模型的基础构建2.2模型训练:从数据到智能的转化2.3⚙️模型优化:精益求精的智能化提升2.4模型解释与可视化:揭示黑盒的内部3实际应用案例:AI大
- 深度学习的一个完整过程通常包括以下几个步骤
longerVR
DL深度学习人工智能
深度学习的一个完整过程通常包括以下几个步骤:问题定义和数据收集:定义清晰的问题,明确任务的类型(分类、回归、聚类等)以及预期的输出。收集和整理用于训练和评估模型的数据集。确保数据集的质量,进行预处理和清理。数据预处理:处理缺失值、异常值和重复数据。进行特征工程,选择、转换或创建合适的特征。将数据集划分为训练集、验证集和测试集。选择模型架构:根据问题的性质选择适当的深度学习模型架构,如卷积神经网络(
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 零基础入门金融风控-贷款违约预测Task2 数据分析
一缕阳光lyz
数据分析数据挖掘
Task2数据分析此部分为零基础入门金融风控的Task2数据分析部分,带你来了解数据,熟悉数据,为后续的特征工程做准备,欢迎大家后续多多交流。赛题:零基础入门数据挖掘-零基础入门金融风控之贷款违约目的:1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.2.了解变量间的相互关系、变量与预测值之间的存在关系。3.为特征工
- 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
Yaoyao2024
机器学习线性回归人工智能
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 深度学习从入门到不想放弃-1
周博洋K
深度学习人工智能
基本功总是很香的,良好的基础才能决定上层建筑的质量和高度。从今天开始陆续连载一些深度学习的基础,包括概念,数学原理,代码,最近也确实没什么热点可以蹭先看机器学习和深度学习的对比:"数据和特征决定了机器学习的上限,而模型与算法则是逼近这个上限而已",机器学习和深度学习的本质区别之一是特征工程,而特征工程又是决定最终结果好坏的最重要的因素之一;上图最上面描述是机器学习的流程,如果让一个计算机理解输入的
- 《区块链公链数据分析简易速速上手小册》第8章:实战案例研究(2024 最新版)
江帅帅
区块链数据分析数据挖掘人工智能pythonweb3机器学习
文章目录8.1案例分析:投资决策支持8.1.1基础知识8.1.2重点案例:股票市场趋势预测准备工作实现步骤步骤1:加载和准备数据步骤2:特征工程步骤3:训练模型步骤4:评估模型结论8.1.3拓展案例1:基于情感分析的投资策略准备工作实现步骤
- 机器学习中的特征工程
qq_44980515
机器学习python数据分析人工智能
目录一、特征工程目标二、特征工程内容(一)异常处理(二)特征标准化/归一化(三)数据分桶(四)缺失值处理(五)特征构造(六)特征筛选(特征选择)(七)降维三、代码示例(一)导入数据(二)删除异常值(三)特征构造(四)特征筛选1.过滤式2.包裹式一、特征工程目标对于特征进行进一步分析,并对于数据进行处理。完成对于特征工程的分析,并对于数据进行一些图表或者文字总结。特征工程的主要目的还是在于将数据转换
- FFA 2023 专场解读:AI 特征工程、数据集成
flink大数据
今年FlinkForwardAsia(以下简称FFA)重新回归线下,将于12月8-9日在北京望京凯悦酒店举办。FlinkForwardAsia2023大会议程已正式上线!FlinkForward是由Apache官方授权的ApacheFlink社区官方技术大会,作为最受ApacheFlink社区开发者期盼的年度峰会之一,FFA2023将持续集结行业最佳实践以及Flink最新技术动态,是中国Flink
- 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(1)搭建一个机器学习模型
giszz
人工智能学习笔记人工智能学习笔记
今天学习的是,如何搭建一个机器学习模型。主要有以上的步骤:原始数据采集特征工程数据预处理特征提取特征转换(构造)预测识别(模型训练和测试)在实际工作中,特征比模型更重要。数据和特征的选择,已经决定了模型的天花板,模型算法只是去逼近这个上限。在上述的特征工程中:数据预处理,就是去除数据的噪声,例如文本中的错误、不再使用的词语等;特征提取,就是从原始数据中提取一些有效的特征。例如图像分类中,提取边缘、
- 基于决策树的金融市场波动性预测与应用
OverlordDuke
机器学习决策树决策树算法机器学习
基于决策树的金融市场波动性预测与应用项目背景与意义数据概述与分析数据来源数据特征数据预处理与特征工程模型训练与评估结果与应用总结LightGBM是一个机器学习算法库,用于梯度提升机(GradientBoostingMachine)的实现。梯度提升机是一种集成学习方法,通过串行训练多个弱学习器(通常是决策树),每次学习的模型都试图纠正前一次模型的错误,从而逐步提升整体模型的性能。LightGBM算法
- 探索XGBoost:时间序列数据建模
Echo_Wish
Python笔记Python算法python算法开发语言
导言XGBoost是一种强大的机器学习算法,广泛应用于各种领域的数据建模任务中。但是,在处理时间序列数据时,需要特别注意数据的特点和模型的选择。本教程将深入探讨如何在Python中使用XGBoost建模时间序列数据,包括数据准备、特征工程和模型训练等方面,并提供相应的代码示例。准备数据在处理时间序列数据之前,首先需要准备数据。通常,时间序列数据是按照时间顺序排列的,每个时间点都有相应的观测值。以下
- 葫芦书第一章——特征工程
单调不减
葫芦书是机器学习岗位面试的必读书,第一遍读,就当作对自己这四个月以来入门机器学习的知识测验,顺便查漏补缺。葫芦书比较好的一点是它的写作是通过问答方式进行的,就像一场模拟面试一样,而这些问题可能是我自学相关知识的时候没有细想过的,通过这些问题我也可以发现自己的知识盲区,再查阅相关资料。闲言少叙,开始啦。特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本
- task3 特征工程
1598903c9dd7
1.采用tsfresh工具包提取时间序列特征导入工具包:提取特征:融合之前单变量特征之后,预测变差......哭
- task 13 集成学习
罐罐儿111
蒸汽量预测1.特征工程一般流程:1.去掉无用特征2.去掉冗余特征3.利用存在的特征、特征转换、内容中的特征以及其他数据源生成新特征4.特征转换(数值化、类别转换、归一化)5.特征处理(异常值、最大值、最小值、缺失值)观察特征核密度估计,已知散点图,做回归,要求连线尽可能平滑,大致观察数据的分布情况。在本例中,通过核密度估计,观察训练集与测试集数据的分布情况,从而删除不具有相似分布的属性值计算相关性
- 机器学习各种算法汇总模板
怎么菜成这样
机器学习机器学习python算法随机森林支持向量机
机器学习算法模板包含了KNN,线性回归,逻辑回归,朴素贝叶斯,决策树,支持向量机,随机森林,kmeans,集成算法各种算法,特征工程,评估方式任你选择!!!#导包fromsklearn.neighborsimportKNeighborsClassifierfromsklearn.linear_modelimportLinearRegressionfromsklearn.naive_bayesimp
- 特征工程:数据平衡
林浩杨
数据探索与可视化机器学习python人工智能机器学习算法数据挖掘
目录一、前言二、正文Ⅰ.基于过采样算法Ⅱ.基于欠采样算法Ⅲ..基于过采样和欠采样的综合算法三、结语一、前言大多数情况下,使用的数据集是不完美的,会出现各种各样的问题,尤其针对分类问题的时候,会出现类别不平衡的问题。例如:在垃圾邮件分类时,垃圾邮件数据会有较少的样本量,从而导致两种类型的邮件数据量差别很大;在欺诈监测数据集中,往往包含的欺诈样本并没有那么多。处理这类数据集的分类的时候,需要对数据集的
- 掌握XGBoost:特征工程与数据预处理
Echo_Wish
Python算法Python笔记机器学习python人工智能
掌握XGBoost:特征工程与数据预处理导言在应用XGBoost模型之前,特征工程和数据预处理是至关重要的步骤。良好的特征工程和数据预处理可以显著提高模型的性能。本教程将介绍在Python中使用XGBoost进行特征工程和数据预处理的中级教程,通过代码示例详细说明各种技术和方法。安装XGBoost首先,请确保您已经安装了Python和pip。然后,您可以使用以下命令安装XGBoost:pipins
- 梯度提升树系列6——GBDT在异常检测领域的应用
theskylife
数据挖掘机器学习数据挖掘GBDT分类python
目录写在开头1异常检测的基本概念1.1定义和目标1.2GBDT在异常检测中的适用性2信用卡欺诈检测案例分析2.1场景介绍2.2收集数据和特征工程2.3进行异常值识别2.4模型效果评估2.5模型优化3策略和技巧4面临的挑战和解决方案4.1数据不平衡4.2过拟合4.3模型解释性写在最后在如今数据驱动的时代,异常检测成为了保障系统安全的关键技术,尤其在金融安全、网络安全等领域中扮演着至关重要的角色。梯度
- 【深度学习:掌握监督学习】掌握监督学习综合指南
jcfszxc
深度学习知识专栏深度学习学习人工智能
【深度学习:掌握监督学习】掌握监督学习综合指南监督学习的定义和简要说明监督学习在人工智能中的重要性和相关性概述什么是监督学习?基本概念主要组件:输入要素和目标标签训练监督式学习模型监督学习算法的类型分类回归每个类别中的流行算法示例监督学习的数据预处理数据清洗数据转换数据缩减特征工程概念简介及其对模型性能的影响模型评估和验证评估和验证监督学习模型的重要性常见评估指标概述模型评估技术挑战和未来方向监督
- Titanic - 1
silent_eyes_77
本周原想探究一下seaborn绘图方面的运用,发现用在实际案例中更有效果,遂直接用Kaggel经典的Titanic案例的描述性分析部分进行研究。以下是案例的其中一部分,模型探究有待补充与更新。复习一下,完成这篇分析报告需要进行的几个步骤:一、导入数据包与数据集二、数据分析1、总体预览2、描述性统计分析:使用统计学与绘图,初步了解数据之间相关性,为构造特征工程和模型建立做准备3、数据清洗4、建模与优
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后