核心概述:在开发中,我们经常使用匿名内部类作为实参传递参数,我们可以发现匿名内部类的格式比较繁琐,那么如何简化呢?本篇我们将会学习到Lambda表达式来帮助我们解决问题。另外我们也将学习与Lambda表达式相关的函数式接口,以及Stream流。
第一章:Lambda表达式
1.1-函数式编程介绍(了解)
在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做。
面向对象的思想: 做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情。
函数式编程思想: 只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不重视过程 。
1.2-为什么要用Lambda表达式(了解)
以Runnable为例
当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable
接口来定义任务内容,并使用java.lang.Thread
类来启动该线程。
传统写法:
public class Demo01Runnable {
public static void main(String[] args) {
// 匿名内部类
Runnable task = new Runnable() {
@Override
public void run() {
// 覆盖重写抽象方法
System.out.println("多线程任务执行!");
}
};
new Thread(task).start(); // 启动线程
}
}
本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个 Runnable 接口的匿名内部类对象来指定任务内 容,再将其交给一个线程来启动。
传统写法分析:
- Thread 类需要 Runnable 接口作为参数,其中的抽象 run 方法是用来指定线程任务内容的核心;
- 为了指定 run 的方法体,不得不需要 Runnable 接口的实现类;
- 为了省去定义一个 RunnableImpl 实现类的麻烦,不得不使用匿名内部类;
- 必须覆盖重写抽象 run 方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
- 而实际上,似乎只有方法体才是关键所在。
编程思想的转变
我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正希望做的事情是:将 run 方法体内的代码传递给 Thread 类知晓。
传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。
那有没有更加简单的办法?如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达 到目的,过程与形式其实并不重要
Lambda优化体验
借助Java 8的全新语法,上述Runnable
接口的匿名内部类写法可以通过更简单的Lambda表达式达到等效:
public class Demo01LambdaRunnable {
public static void main(String[] args) {
new Thread(() -> System.out.println("多线程任务执行!")).start(); // 启动线程
}
这段代码和刚才的执行效果是完全一样的,可以在1.8或更高的编译级别下通过。从代码的语义中可以看出:我们启动了一个线程,而线程任务的内容以一种更加简洁的形式被指定。
不再有“不得不创建接口对象”的束缚,不再有“抽象方法覆盖重写”的负担,就是这么简单!
1.3-Lambda格式(重要)
格式
- Lambda省去面向对象的条条框框,格式由3个部分组成:
- 一些参数
- 一个箭头
- 一段代码
- 标准格式:
(参数类型 参数名称) ‐> { 代码语句 }
- 格式说明:
- 小括号内的语法与传统方法参数列表一致:无参数则留空;多个参数则用逗号分隔。
-
->
是新引入的语法格式,代表指向动作。 - 大括号内的语法与传统方法体要求基本一致。
无参无返回值代码,匿名内部类与lambda对比
代码:
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("多线程任务执行!");
}
}).start();
仔细分析该代码中,Runnable
接口只有一个run
方法的定义:
public abstract void run();
即制定了一种做事情的方案(其实就是一个方法):
- 无参数:不需要任何条件即可执行该方案。
- 无返回值:该方案不产生任何结果。
- 代码块(方法体):该方案的具体执行步骤。
同样的语义体现在Lambda
语法中,要更加简单:
() -> System.out.println("多线程任务执行!")
代码说明:
- 前面的一对小括号即
run
方法的参数(无),代表不需要任何条件; - 中间的一个箭头代表将前面的参数传递给后面的代码;
- 后面的输出语句即业务逻辑代码。
有参有返回值代码,Comparator接口的使用
下面举例演示java.util.Comparator
接口的使用场景代码,其中的抽象方法定义为:
public abstract int compare(T o1, T o2);
当需要对一个对象数组进行排序时,Arrays.sort
方法需要一个Comparator
接口实例来指定排序的规则。假设有一个Person
类,含有String name
和int age
两个成员变量:
public class Person {
private String name;
private int age;
// 省略构造器、toString方法与Getter Setter
}
传统写法
如果使用传统的代码对Person[]
数组进行排序,写法如下:
public class Demo05Comparator {
public static void main(String[] args) {
// 本来年龄乱序的对象数组
Person[] array = { new Person("古力娜扎", 19), new Person("迪丽热巴", 18), new Person("马尔扎哈", 20) };
// 匿名内部类
Comparator comp = new Comparator() {
@Override
public int compare(Person o1, Person o2) {
return o1.getAge() - o2.getAge();
}
};
Arrays.sort(array, comp); // 第二个参数为排序规则,即Comparator接口实例
for (Person person : array) {
System.out.println(person);
}
}
}
这种做法在面向对象的思想中,似乎也是“理所当然”的。其中Comparator
接口的实例(使用了匿名内部类)代表了“按照年龄从小到大”的排序规则。
代码分析
下面我们来搞清楚上述代码真正要做什么事情。
- 为了排序,
Arrays.sort
方法需要排序规则,即Comparator
接口的实例,抽象方法compare
是关键; - 为了指定
compare
的方法体,不得不需要Comparator
接口的实现类; - 为了省去定义一个
ComparatorImpl
实现类的麻烦,不得不使用匿名内部类; - 必须覆盖重写抽象
compare
方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错; - 实际上,只有参数和方法体才是关键。
Lambda写法
public class Demo06ComparatorLambda {
public static void main(String[] args) {
Person[] array = {
new Person("古力娜扎", 19),
new Person("迪丽热巴", 18),
new Person("马尔扎哈", 20) };
Arrays.sort(array, (Person a, Person b) -> {
return a.getAge() - b.getAge();
});
for (Person person : array) {
System.out.println(person);
}
}
}
省略格式
省略规则
在Lambda标准格式的基础上,使用省略写法的规则为:
- 小括号内参数的类型可以省略;
- 如果小括号内有且仅有一个参,则小括号可以省略;
- 如果大括号内有且仅有一个语句,则无论是否有返回值,都可以省略大括号、return关键字及语句分号。
1.4-Lambda的前提条件(了解)
Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:
- 使用Lambda必须具有接口,且要求接口中有且仅有一个抽象方法。
无论是JDK内置的Runnable
、Comparator
接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda。 - 使用Lambda必须具有接口作为方法参数。
也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。
有且仅有一个抽象方法的接口,称为“函数式接口”。
第二章:函数式接口
2.1-概述(了解)
介绍
函数式接口在Java中是指:有且仅有一个抽象方法的接口。
函数式接口,即适用于函数式编程场景的接口。而Java中的函数式编程体现就是Lambda,所以函数式接口就是可以适用于Lambda使用的接口。只有确保接口中有且仅有一个抽象方法,Java中的Lambda才能顺利地进行推导。
从应用层面来讲,Java中的Lambda可以看做是匿名内部类的简化格式。
格式
只要确保接口中有且仅有一个抽象方法即可:
修饰符 interface 接口名称 {
public abstract 返回值类型 方法名称(可选参数信息);
// 其他非抽象方法内容
}
public abstract 可以省略
FunctionalInterface注解
与@Override
注解的作用类似,Java 8中专门为函数式接口引入了一个新的注解:@FunctionalInterface
。该注解可用于一个接口的定义上:
@FunctionalInterface
public interface MyFunctionalInterface {
void myMethod();
}
一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。不过,即使不使用该注解,只要满足函数式接口的定义,这仍然是一个函数式接口,使用起来都一样。
2.2-常用的函数式接口(重点)
JDK提供了大量常用的函数式接口以丰富Lambda的典型使用场景,它们主要在java.util.function
包中被提供。下面是最简单的几个接口及使用示例。
Supplier接口
java.util.function.Supplier
接口,它意味着"供给" , 对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。
抽象方法 : get
仅包含一个无参的方法:T get()
。用来获取一个泛型参数指定类型的对象数据。
public class Demo08Supplier {
private static String getString(Supplier function) {
return function.get();
}
public static void main(String[] args) {
String msgA = "Hello";
String msgB = "World";
System.out.println(getString(() -> msgA + msgB));
}
}
求数组元素最大值
使用Supplier
接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。提示:接口的泛型请使用java.lang.Integer
类。
代码示例:
public class DemoIntArray {
public static void main(String[] args) {
int[] array = { 10, 20, 100, 30, 40, 50 };
printMax(() -> {
int max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max) {
max = array[i];
}
}
return max;
});
}
private static void printMax(Supplier supplier) {
int max = supplier.get();
System.out.println(max);
}
}
Consumer接口
java.util.function.Consumer
接口则正好相反,它不是生产一个数据,而是消费一个数据,其数据类型由泛型参数决定。
抽象方法:accept
Consumer
接口中包含抽象方法void accept(T t)
,意为消费一个指定泛型的数据。基本使用如:
import java.util.function.Consumer;
public class Demo09Consumer {
private static void consumeString(Consumer function , String str) {
function.accept(str);
}
public static void main(String[] args) {
consumeString(s -> System.out.println(s));
}
}
Function接口
java.util.function.Function
接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件,后者称为后置条件。有进有出,所以称为“函数Function”。
抽象方法:apply
Function
接口中最主要的抽象方法为:R apply(T t)
,根据类型T的参数获取类型R的结果。使用的场景例如:将String
类型转换为Integer
类型。
public class Demo11FunctionApply {
private static void method(Function function, Str str) {
int num = function.apply(str);
System.out.println(num + 20);
}
public static void main(String[] args) {
method(s -> Integer.parseInt(s) , "10");
}
}
Predicate接口
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate
接口。
抽象方法:test
Predicate
接口中包含一个抽象方法:boolean test(T t)
。用于条件判断的场景,条件判断的标准是传入的Lambda表达式逻辑,只要字符串长度大于5则认为很长。
public class Demo15PredicateTest {
private static void method(Predicate predicate,String str) {
boolean veryLong = predicate.test(str);
System.out.println("字符串很长吗:" + veryLong);
}
public static void main(String[] args) {
method(s -> s.length() > 5, "HelloWorld");
}
}
第三章:Stream流
在Java 8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。
3.1-为什么要用Stream流(了解)
传统集合的多步遍历代码
几乎所有的集合(如Collection
接口或Map
接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:
public class Demo10ForEach {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
for (String name : list) {
System.out.println(name);
}
}
}
这是一段非常简单的集合遍历操作:对集合中的每一个字符串都进行打印输出操作。
循环遍历的弊端
Java 8的Lambda让我们可以更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,我们仔细体会一下上例代码,可以发现:
- for循环的语法就是“怎么做”
- for循环的循环体才是“做什么”
为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。
试想一下,如果希望对集合中的元素进行筛选过滤:
- 将集合A根据条件一过滤为子集B;
- 然后再根据条件二过滤为子集C。
那怎么办?在Java 8之前的做法可能为:
这段代码中含有三个循环,每一个作用不同:
- 首先筛选所有姓张的人;
- 然后筛选名字有三个字的人;
- 最后进行对结果进行打印输出。
public class Demo11NormalFilter {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
List zhangList = new ArrayList<>();
for (String name : list) {
if (name.startsWith("张")) {
zhangList.add(name);
}
}
List shortList = new ArrayList<>();
for (String name : zhangList) {
if (name.length() == 3) {
shortList.add(name);
}
}
for (String name : shortList) {
System.out.println(name);
}
}
}
每当我们需要对集合中的元素进行操作的时候,总是需要进行循环、循环、再循环。这是理所当然的么?不是。循环是做事情的方式,而不是目的。另一方面,使用线性循环就意味着只能遍历一次。如果希望再次遍历,只能再使用另一个循环从头开始。
那,Lambda的衍生物Stream能给我们带来怎样更加优雅的写法呢?
Stream的更优写法
下面来看一下借助Java 8的Stream API,什么才叫优雅:
public class Demo12StreamFilter {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
list.stream()
.filter(s -> s.startsWith("张"))
.filter(s -> s.length() == 3)
.forEach(s -> System.out.println(s));
}
}
直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:获取流、过滤姓张、过滤长度为3、逐一打印。代码中并没有体现使用线性循环或是其他任何算法进行遍历,我们真正要做的事情内容被更好地体现在代码中。
3.2-流式思想(了解)
注意:请暂时忘记对传统IO流的固有印象!
整体来看,流式思想类似于工厂车间的“生产流水线”。
当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个“模型”步骤 方案,然后再按照方案去执行它。
这张图中展示了过滤、映射、跳过、计数等多步操作,这是一种集合元素的处理方案,而方案就是一种“函数模型”。图中的每一个方框都是一个“流”,调用指定的方法,可以从一个流模型转换为另一个流模型。而最右侧的数字3是最终结果。
3.3-获取流的方式(重点)
java.util.stream.Stream
是Java 8新加入的最常用的流接口。(这并不是一个函数式接口。)
获取一个流非常简单,有以下几种常用的方式:
- 所有的
Collection
集合都可以通过stream
默认方法获取流; -
Stream
接口的静态方法of
可以获取数组对应的流。
方式1 : 根据Collection获取流
首先,java.util.Collection
接口中加入了default方法stream
用来获取流,所以其所有实现类均可获取流。
import java.util.*;
import java.util.stream.Stream;
/*
获取Stream流的方式
1.Collection中 方法
Stream stream()
2.Stream接口 中静态方法
of(T...t) 向Stream中添加多个数据
*/
public class Demo13GetStream {
public static void main(String[] args) {
List list = new ArrayList<>();
// ...
Stream stream1 = list.stream();
Set set = new HashSet<>();
// ...
Stream stream2 = set.stream();
}
}
方式2: 根据数组获取流
如果使用的不是集合或映射而是数组,由于数组对象不可能添加默认方法,所以Stream
接口中提供了静态方法of
,使用很简单:
import java.util.stream.Stream;
public class Demo14GetStream {
public static void main(String[] args) {
String[] array = { "张无忌", "张翠山", "张三丰", "张一元" };
Stream stream = Stream.of(array);
}
}
of
方法的参数其实是一个可变参数,所以支持数组。
3.4-常用方法(重点)
流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:
- 终结方法:返回值类型不再是
Stream
接口自身类型的方法,因此不再支持类似StringBuilder
那样的链式调用。本小节中,终结方法包括count
和forEach
方法。 - 非终结方法:返回值类型仍然是
Stream
接口自身类型的方法,因此支持链式调用。(除了终结方法外,其余方法均为非终结方法。)
更多方法,请自行参考API文档。
逐一处理方法:forEach
虽然方法名字叫 forEach ,但是与for循环中的“for-each”昵称不同。
void forEach(Consumer super T> action);
该方法接收一个 Consumer 接口函数,会将每一个流元素交给该函数进行处理。
java.util.function.Consumer接口是一个消费型接口。
Consumer接口中包含抽象方法void accept(T t),意为消费一个指定泛型的数据。
基本使用
public class Test01 {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张三");
list.add("李四");
list.add("王五");
list.stream().forEach(name-> System.out.println(name));
}
}
过滤方法:filter
可以通过 filter 方法将一个流转换成另一个子集流。方法签名:
Stream filter(Predicate super T> predicate);
该接口接收一个 Predicate 函数式接口参数(可以是一个Lambda或方法引用)作为筛选条件。
复习Predicate接口
java.util.stream.Predicate
函数式接口,其中唯一的抽象方法为:
boolean test(T t);
该方法将会产生一个boolean值结果,代表指定的条件是否满足。如果结果为true,那么Stream流的 filter 方法 将会留用元素;如果结果为false,那么 filter 方法将会舍弃元素。
基本使用
Stream流中的 filter 方法基本使用的代码如:
public class Test02 {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张三");
list.add("李四");
list.add("张三丰");
list.add("王五");
list.add("张无忌");
list.stream()
.filter(name->name.startsWith("张"))
.forEach(name-> System.out.println(name));
}
}
在这里通过Lambda表达式来指定了筛选的条件:必须姓张。
映射方法:map
如果需要将流中的元素映射到另一个流中,可以使用 map
方法。方法签名:
Stream map(Function super T, ? extends R> mapper);
该接口需要一个 Function 函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。
复习Function接口
此前我们已经学习过 java.util.stream.Function
函数式接口,其中唯一的抽象方法为:
R apply(T t);
这可以将一种T类型转换成为R类型,而这种转换的动作,就称为“映射”
基本使用
public class Test03 {
public static void main(String[] args) {
String[]strs = {"11","22","33","44"};
Stream.of(strs)
.map((s -> Integer.parseInt(s)))
.forEach(i-> System.out.println(i+2));
}
}
这段代码中, map 方法的参数通过方法引用,将字符串类型转换成为了int类型(并自动装箱为 Integer 类对 象)。
统计个数方法:count
正如旧集合 Collection 当中的 size 方法一样,流提供 count 方法来数一数其中的元素个数:
long count();
该方法返回一个long值代表元素个数(不再像旧集合那样是int值)。基本使用:
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张三");
list.add("李四");
list.add("张三丰");
list.add("王五");
list.add("张无忌");
long i = list.stream()
.filter(name->name.startsWith("张"))
.count();
System.out.println(i);//3
}
取用前几个方法:limit
limit 方法可以对流进行截取,只取用前n个。方法签名:
Stream limit(long maxSize);
参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作。基本使用:
public class Test06 {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张三");
list.add("李四");
list.add("张三丰");
list.add("王五");
list.add("张无忌");
list.stream()
.filter(name->name.startsWith("张"))
.limit(2)
.forEach(name-> System.out.println(name));
}
}
// 结果-张三、张三丰
跳过前几个方法:skip
如果希望跳过前几个元素,可以使用 skip 方法获取一个截取之后的新流:
Stream skip(long n);
如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。基本使用:
public class Test07 {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add("张三");
list.add("李四");
list.add("张三丰");
list.add("王五");
list.add("张无忌");
list.stream()
.filter(name->name.startsWith("张"))
.skip(2)
.forEach(name-> System.out.println(name));
}
}
// 结果:张无忌
组合方法,concat
如果有两个流,希望合并成为一个流,那么可以使用 Stream 接口的静态方法 concat :
static Stream concat(Stream extends T> a, Stream extends T> b)
这是一个静态方法,与 java.lang.String 当中的 concat 方法是不同的。
该方法的基本使用代码如:
public class Test08 {
public static void main(String[] args) {
Stream s1 = Stream.of("张三","李四");
Stream s2 = Stream.of("王五","赵六");
Stream.concat(s1,s2).forEach(name-> System.out.println(name));
}
}
// 结果:张三、李四、王五、赵六
流转集合方法,collect
从Stream流对象转成集合对象,使用Stream
接口方法collect:
public class StreamDemo06 {
public static void main(String[] args) {
List list = new ArrayList();
list.add("张无忌");
list.add("周芷若");
list.add("张三丰");
Stream stream = list.stream();
//Stream流对象collect()传递Collectors静态方法toList() 流对象元素转成集合
List newList = stream.filter( s->s.startsWith("张")).collect(Collectors.toList());
System.out.println(newList);
}
}
3.5-综合案例(练习)
需求
现在有两个ArrayList
集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以下若干操作步骤:
- 第一个队伍只要名字为3个字的成员姓名;
- 第一个队伍筛选之后只要前3个人;
- 第二个队伍只要姓张的成员姓名;
- 第二个队伍筛选之后不要前2个人;
- 将两个队伍合并为一个队伍;
- 打印整个队伍的姓名信息。
两个队伍(集合)的代码如下:
public class Demo21ArrayListNames {
public static void main(String[] args) {
List one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("老子");
one.add("庄子");
one.add("孙子");
one.add("洪七公");
List two = new ArrayList<>();
two.add("古力娜扎");
two.add("张无忌");
two.add("张三丰");
two.add("赵丽颖");
two.add("张二狗");
two.add("张天爱");
two.add("张三");
// ....
}
}
传统方式
使用for循环 , 示例代码:
public class Demo22ArrayListNames {
public static void main(String[] args) {
List one = new ArrayList<>();
// ...
List two = new ArrayList<>();
// ...
// 第一个队伍只要名字为3个字的成员姓名;
List oneA = new ArrayList<>();
for (String name : one) {
if (name.length() == 3) {
oneA.add(name);
}
}
// 第一个队伍筛选之后只要前3个人;
List oneB = new ArrayList<>();
for (int i = 0; i < 3; i++) {
oneB.add(oneA.get(i));
}
// 第二个队伍只要姓张的成员姓名;
List twoA = new ArrayList<>();
for (String name : two) {
if (name.startsWith("张")) {
twoA.add(name);
}
}
// 第二个队伍筛选之后不要前2个人;
List twoB = new ArrayList<>();
for (int i = 2; i < twoA.size(); i++) {
twoB.add(twoA.get(i));
}
// 将两个队伍合并为一个队伍;
List totalNames = new ArrayList<>();
totalNames.addAll(oneB);
totalNames.addAll(twoB);
// 打印整个队伍的姓名信息。
for (String name : totalNames) {
System.out.println(name);
}
}
}
运行结果为:
宋远桥
苏星河
洪七公
张二狗
张天爱
张三
Stream方式
等效的Stream流式处理代码为:
public class Demo23StreamNames {
public static void main(String[] args) {
List one = new ArrayList<>();
// ...
List two = new ArrayList<>();
// ...
// 第一个队伍只要名字为3个字的成员姓名;
// 第一个队伍筛选之后只要前3个人;
Stream streamOne = one.stream().filter(s -> s.length() == 3).limit(3);
// 第二个队伍只要姓张的成员姓名;
// 第二个队伍筛选之后不要前2个人;
Stream streamTwo = two.stream().filter(s -> s.startsWith("张")).skip(2);
// 将两个队伍合并为一个队伍;
// 根据姓名创建Person对象;
// 打印整个队伍的Person对象信息。
Stream.concat(streamOne, streamTwo).forEach(s->System.out.println(s));
}
}
运行效果完全一样:
宋远桥
苏星河
洪七公
张二狗
张天爱
张三