Hadoop是一个适合大数据的分布式存储与计算平台。
作者:Doug Cutting;Lucene,Nutch。
受Google三篇论文的启发
HDFS: Hadoop Distributed File System 分布式文件系统
MapReduce:并行计算框架
(1) 主从结构
•主节点,只有一个: namenode
•从节点,有很多个: datanodes
(2) namenode负责:管理
•接收用户操作请求,可以实现对文件系统的操作(一般的操作方式有两种,命令行方式和Java API方式)
•维护文件系统的目录结构(用来对文件进行分类管理)。
•管理文件与block之间关系(文件被划分成了Block,Block属于哪个文件,以及Block的顺序好比电影剪辑),block与datanode之间关系。
(3) datanode负责:存储
•存储文件
•文件被分成block(block一般是以64M来划分,但每个Block块所占用的空间是文件实际的空间)存储在磁盘上,将大数据划分成相对较小的block块,这样可以充分利用磁盘空间,方便管理。
•为保证数据安全,文件会有多个副本(就好比配钥匙,都是为了预防丢失),这些副本会一块一块复制,分别存储在不同的DataNode上。
(1)主从结构
•主节点,只有一个: JobTracker
•从节点,有很多个: TaskTrackers
(2)JobTracker 负责:
•接收客户提交的计算任务
•把计算任务分给TaskTrackers执行
•监控TaskTracker的执行情况
(3)TaskTrackers负责:
•执行JobTracker分配的计算任务
(1) 扩容能力(Scalable):能可靠地(reliably)存储和处理千兆字节(PB)数据。
(2) 成本低(Economical):可以通过普通机器组成的服务器群来分发以及处理数据。这些服务器群总计可达数千个节点。
(3) 高效率(Efficient):通过分发数据,hadoop可以在数据所在的节点上并行地处理它们,这使得处理非常的快速。
(4) 可靠性(Reliable):hadoop能自动地维护数据的多份副本,并且在任务失败后能自动地重新部署计算任务。
如图1.1
这里是一个由两个机架组成的机群,图中有两种颜色绿色和黄色,不难看出黄色为主节点(Master),NameNode和JobTracker都独占一个服务器,只有一个是唯一,绿色为从节点(Slave)有多个。而上面所说的JobTracker、NameNode,DataNode,TaskTracker本质都是Java进程,这些进程进行相互调用来实现各自的功能,而主节点与从节点一般运行在不同的java虚拟机之中,那么他们之间的通信就是跨虚拟机的通信。
这些机群上放的都是服务器,服务器本质上就是物理硬件,服务器是主节点还是从节点,主要看是跑的是什么角色或进程,如果上面跑的是Tomcat他就是WEB服务器,跑的是数据库就是数据库服务器,所以当服务器上跑的是NameNode或JobTracker是就是主节点,跑的是DataNode或TaskTracker就是从节点。
为了实现高速通信,我们一般都使用局域网,在内网中可使用千兆网卡、高频交换机、光纤等。
Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。Hadoop的核心是HDFS和Mapreduce,hadoop2.0还包括YARN。下图为hadoop的生态系统:
图 3 Hadoop生态圈
源自于Google的GFS论文,发表于2003年10月,HDFS是GFS克隆版。是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。
图4
Client:切分文件;访问HDFS;与NameNode交互,获取文件位置信息;与DataNode交互,读取和写入数据。
NameNode:Master节点,在hadoop1.X中只有一个,管理HDFS的名称空间和数据块映射信息,配置副本策略,处理客户端请求。
DataNode:Slave节点,存储实际的数据,汇报存储信息给NameNode。
Secondary NameNode:辅助NameNode,分担其工作量;定期合并fsimage和fsedits,推送给NameNode;紧急情况下,可辅助恢复NameNode,但Secondary NameNode并非NameNode的热备。
源自于google的MapReduce论文,发表于2004年12月,Hadoop MapReduce是google MapReduce 克隆版。MapReduce是一种分布式计算模型,用以进行大数据量的计算。其中Map,对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce,则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。
JobTracker:Master节点,只有一个,管理所有作业,作业/任务的监控、错误处理等;将任务分解成一系列任务,并分派给TaskTracker。
TaskTracker:Slave节点,运行Map Task和Reduce Task;并与JobTracker交互,汇报任务状态。
Map Task:解析每条数据记录,传递给用户编写的map(),并执行,将输出结果写入本地磁盘(如果为map-only作业,直接写入HDFS)。
Reducer Task:从Map Task的执行结果中,远程读取输入数据,对数据进行排序,将数据按照分组传递给用户编写的reduce函数执行。
Mapreduce处理流程,以wordCount为例:
由facebook开源,最初用于解决海量结构化的日志数据统计问题。Hive定义了一种类似SQL的查询语言(HQL), 将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。
详见:http://pan.baidu.com/s/1eQCcdcm
注本文部分摘录自:http://blog.csdn.net/woshiwanxin102213/article/details/19688393