聚类(Clustering) K-means算法

1. 归类:

  • 聚类(clustering) 属于非监督学习(unsupervised learning)

  • 无类别标记(class label)

2. 举例:

聚类(Clustering) K-means算法_第1张图片

3. K-means 算法:

3.1 Clustering 中的经典算法,数据挖掘十大经典算法之一

3.2 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

3.3 算法思想:
以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心 的值,直至得到最好的聚类结果

3.4 算法描述:

(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c各中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束, 否则继续迭代。

3.5 算法流程:

输入:k, data[n];
(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n], 分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

聚类(Clustering) K-means算法_第2张图片

4. 举例

聚类(Clustering) K-means算法_第3张图片
聚类(Clustering) K-means算法_第4张图片
聚类(Clustering) K-means算法_第5张图片
聚类(Clustering) K-means算法_第6张图片
聚类(Clustering) K-means算法_第7张图片
聚类(Clustering) K-means算法_第8张图片
聚类(Clustering) K-means算法_第9张图片

优点:速度快,简单

缺点:最终结果跟初始点选择相关,容易陷入局部最优,需直到k值

Reference:http://croce.ggf.br/dados/K%20mean%20Clustering1.pdf

5.代码

 import numpy as np

# Function: K Means

# -------------

# K-Means is an algorithm that takes in a dataset and a constant

# k and returns k centroids (which define clusters of data in the

# dataset which are similar to one another).

def kmeans(X, k, maxIt):

    numPoints, numDim = X.shape

    dataSet = np.zeros((numPoints, numDim + 1))

    dataSet[:, :-1] = X

    # Initialize centroids randomly

    centroids = dataSet[np.random.randint(numPoints, size = k), :]

    centroids = dataSet[0:2, :]

    #Randomly assign labels to initial centorid

    centroids[:, -1] = range(1, k +1)

    # Initialize book keeping vars.

    iterations = 0

    oldCentroids = None

    # Run the main k-means algorithm

    while not shouldStop(oldCentroids, centroids, iterations, maxIt):

        print "iteration: \n", iterations

        print "dataSet: \n", dataSet

        print "centroids: \n", centroids

        # Save old centroids for convergence test. Book keeping.

        oldCentroids = np.copy(centroids)

        iterations += 1

        # Assign labels to each datapoint based on centroids

        updateLabels(dataSet, centroids)

        # Assign centroids based on datapoint labels

        centroids = getCentroids(dataSet, k)

    # We can get the labels too by calling getLabels(dataSet, centroids)

    return dataSet

# Function: Should Stop

# -------------

# Returns True or False if k-means is done. K-means terminates either

# because it has run a maximum number of iterations OR the centroids

# stop changing.

def shouldStop(oldCentroids, centroids, iterations, maxIt):

    if iterations > maxIt:

        return True

    return np.array_equal(oldCentroids, centroids)  

# Function: Get Labels

# -------------

# Update a label for each piece of data in the dataset. 

def updateLabels(dataSet, centroids):

    # For each element in the dataset, chose the closest centroid. 

    # Make that centroid the element's label.

    numPoints, numDim = dataSet.shape

    for i in range(0, numPoints):

        dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids)

def getLabelFromClosestCentroid(dataSetRow, centroids):

    label = centroids[0, -1];

    minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])

    for i in range(1 , centroids.shape[0]):

        dist = np.linalg.norm(dataSetRow - centroids[i, :-1])

        if dist < minDist:

            minDist = dist

            label = centroids[i, -1]

    print "minDist:", minDist

    return label

# Function: Get Centroids

# -------------

# Returns k random centroids, each of dimension n.

def getCentroids(dataSet, k):

    # Each centroid is the geometric mean of the points that

    # have that centroid's label. Important: If a centroid is empty (no points have

    # that centroid's label) you should randomly re-initialize it.

    result = np.zeros((k, dataSet.shape[1]))

    for i in range(1, k + 1):

        oneCluster = dataSet[dataSet[:, -1] == i, :-1]

        result[i - 1, :-1] = np.mean(oneCluster, axis = 0)

        result[i - 1, -1] = i

    return result

x1 = np.array([1, 1])

x2 = np.array([2, 1])

x3 = np.array([4, 3])

x4 = np.array([5, 4])

testX = np.vstack((x1, x2, x3, x4))

result = kmeans(testX, 2, 10)

print "final result:"

print result





            【注】:本文为麦子学院机器学习课程的学习笔记

你可能感兴趣的:(聚类(Clustering) K-means算法)