- Codeforces Round 969 (Div. 2) C. Dora and C++ (裴蜀定理)
致碑前繁花
刷题记录c语言c++开发语言
什么?竟然是裴蜀定理。。。由于这里给出了a和b两个数,我们或许可以想到使用同样是需要给出两个定值的裴蜀定理,即:如果给定xxx和yyy,那么一定有ax+by=gcd(x,y)ax+by=gcd(x,y)ax+by=gcd(x,y)。所以在这时候我们就可以让输入的所有数都去对gcd(a,b)gcd(a,b)gcd(a,b)取模,这样就能够得到所有数的最简形式(可以当成是让所有数尽可能消去aaa和bb
- 偏偏是个煽情雨季
TX故事
从小到大,没经历过什么大起大落,一切都被安排得妥当。遇见深邃的人,继而平平淡淡,幼稚地为了和某人一样,近了视,继而迷迷糊糊。今天人手一部手机,就算戴好眼镜瞪大眼睛,各种原则定理还是听不下去,究竟美好的东西会不会反噬我?想写写文看看字,画好蓝图,离开条条框框,摆脱“不值得定律”里的一人一物,可责任心也得保留住。这一秒钟,注定只能放空,下雨天,操的心总是重一点,窗外雾气重,路面滑,各个人健康与安全都重
- (凸集)表示定理
流星落黑光
表示定理设为非空多面集,则有:(1)极点集非空,且存在有限个极点(2)极方向集合为空集的充要条件是S有界,若S无界,则存在有限个极方向(3)的充要条件是:证明略。解释:*1:对一个有限多面体的表面,并不需要极方向(极方向只存在与无限情况!),显然任意一个表面上的点都在某个平面上,可由这个平面的端点(即有限个极点)表示。对一个无限多面体表面,若一个点在一个无限大的面上,这个无限大的面也可由有限条线段
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 学习二十大报告精神,做新时代青年。
梁亮亮
党的二十大是在全党全国各族人民全面建成社会主义现代化国家新征程、进入第二个百年奋斗目标的关键时刻召开的一次重要会议,对于党和国家发展史来说具有重要里程碑意义。青年强则国家强,作为新时代的青年,我们要坚定不移听党话跟党走,立志做有理想、敢担当、能吃苦、能奋斗的新时代好青年,就是要牢记“四个意识”、坚定理想信念。“总开关”上不怕下尖子,“总闸门”上不留空间;一个人能成长为一名合格建设者,其实就是站在共
- 【C语言】素数的判断方法----多方法详细分析
gugugu.
C/C++开发语言c语言开发语言
前言素数的判断方法是我们在写程序的过程中经常碰到的问题,今天给大家带来素数的一些判断方法。一、什么是素数?质数(primenumber)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中
- 【04】深度学习——训练的常见问题 | 过拟合欠拟合应对策略 | 过拟合欠拟合示例 | 正则化 | Dropout方法 | Dropout的代码实现 | 梯度消失和爆炸 | 模型文件的读写
花落指尖❀
#深度学习深度学习人工智能目标检测神经网络cnn
深度学习1.常见的分类问题1.1模型架构设计1.2万能近似定理1.3宽度or深度1.4过拟合问题1.5欠拟合问题1.6相互关系2.过拟合欠拟合应对策略2.1问题的本源2.2数据集大小的选择2.3数据增广2.4使用验证集2.5模型选择2.6K折交叉验证2.7提前终止3.过拟合欠拟合示例3.1导入库3.2数据生成3.3数据划分3.4模型定义3.5辅助函数3.6可视化4.正则化4.1深度学习中的正则化4
- 金融三定理
学生行之
Timevalueofmoney资金的聚集风险——保险:让社会分担分散个体的风险风险——股票:让更多人“利益共享,风险共担”风险——风投、创投:让社会分担创业创新风险明白:a时间的价值是切切实实可以看的到!b银行低利率吸收存款,国家发行债券,做基础建设c个人幼年,青年,壮年,老年如何配置资产抵御不同时期的风险!
- 赏析微课堂之达达主义(一)
鼎典美育卷卷老师
鼎典理念:让孩子拥有发现美和独立思考的品质。图片发自App2018.12.25今日赏析微课堂分享~达达艺术1916~1924年在欧美许多城市兴起的一种虚无主义艺术运动。是战后欧洲一些年轻的艺术家厌倦战争、彷徨、失望以及在艺术上否定理性和传统文化、崇拜虚无主义的精神产物。其创作方法主要通过照片剪接或与纸片、抹布拼贴,去追求艺术表现的偶然性。作品怪诞奇特,令人惊惑不解。法国画家马塞尔·杜尚是达达主义的
- 2021-10-03
心心向善
南无羌佛《世法哲言》浅释(二十四)慧海之库与物质之仓是为反量也,慧库无为转无量,多用之反增之。物仓储存乃无常,施之减之,故无为乃大,大在无量,无常乃微,微在消然。如果把人的智慧聪明的储藏境比做一个仓库的话,那么它与储存物质的仓库恰是相对的反量。智慧聪明的仓库属於无为转无量,即以无为的定理转无量的境界,所起的作用的是越用就越多,也就是说,一个人的才智聪明,是越用越聪明,越锻炼反应力就越快,越进步、聪
- 4.3万字详解PHP+RabbitMQ(AMQP协议、通讯架构、6大模式、交换机队列消息持久化、死信队列、延时队列、消息丢失、重复消费、消息应答、消息应答、发布确认、故障转移、不公平分发、优先级、等)
小松聊PHP进阶
laravelPHPphp架构服务器中间件后端laravelrabbitmq
理论(后半部分有实操详解)哲学思考易经思维:向各国人讲述一种动物叫乌龟,要学很久的各国语言,但是随手画一个乌龟,全世界的人都能看得懂。道家思维:努力没有用(指劳神费心的机械性重复、肢体受累、刻意行为),要用心(深度思考、去感悟、透过现象看本质)才有用。举例:类似中学做不出来的几何题的底层原理:不是不知道xx定理或公式(招式),而是不知道画辅助线的思路(内功)。总结:万事万物、用道家思维思考本质与规
- 着力建设一支德才兼备的高质量干部队伍
dc7bce189fd7
党章对加强党的执政能力建设提出了明确要求,党的执政能力的提高,党的建设的加强,关键在党的干部素质的提高上,也就是要有一支善于治国理政的高素质干部队伍。干部队伍的素质如何,对于保持党的先进性,提高党的执政能力,做好各项工作,具有决定性的意义。坚定理想信念,是好干部第一位的标准,以习近平新时代中国特色社会主义思想为指引,在思想认识上毫不动摇坚定道路、理论、制度、文化自信,在政治实践中一以贯之拥护党的领
- 践行青春誓言 建功立业新时代
玉面狐狸在偷塔
入职半月以来,逐渐适应了乡镇基层的工作调性,结合专业所学谈谈我对选调生身份的几点体会。一是,“选”之于党,选调生意味着要信念坚定,对党忠诚。作为从万千考生中选拔出的年轻力量,选调生不能辜负党和人民的期望,要信念坚定、对党忠诚,时刻坚持用党的理论武装头脑、补足精神之钙。习近平总书记曾说:“年轻干部要牢记,坚定理想信念是终身课题,需要常修常炼,要信一辈子,守一辈子。”作为党选出来的青年力量中的一员,我
- 坚定理想信念,锤炼党性修养
知涵知
理想信念是中国共产党人的政治灵魂,是共产党人精神上的“钙”,没有理想信念,理想信念不坚定,精神上就会“缺钙”,就会得“软骨病”。党员干部只有坚定理想信念,强化责任担当,锤炼道德操守,提升党性修养,才能切实做到为党分忧、为国尽责、为民奉献。坚定理想信念,就要强化学习精神、自律精神、担当精神。思想理论上的坚定清醒是政治上坚定的前提,党员干部要始终把理论学习作为政治责任、事业需要和精神追求,积极参加组织
- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- 如何在Java中实现高效的分布式系统:从CAP定理到最终一致性
省赚客app开发者
java开发语言
如何在Java中实现高效的分布式系统:从CAP定理到最终一致性大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式系统,从CAP定理的基础概念到最终一致性的实现策略。一、CAP定理的基础概念CAP定理是分布式系统设计中的基本理论,它指出,在一个分布式系统中,无法同时完全满足一致性(Consistency)、可用性(Availa
- SAP项目管理第二章-方法论实践
syounger
SAP项目管理制造
《SAP项目管理基础与实践》书籍第二章来啦!本章主要是讨论项目管理方法论在实际项目中的实践经验,介绍了SAPActivate中非常有用的文档,并且也探讨了由格力高事件引申的项目质量管理。第二章目录:第2章专题一:SAP项目管理方法论和三角定理2.1项目管理方法论实践2.1.1SAPActivate项目管理方法论路线图2.1.2不同类型项目的方法论实践2.1.3敏捷在SAP项目中的应用2.2三角定理
- 《跳着踢踏舞去上班》书摘和点评
禅堂听雨
跳着踢踏舞去上班卡萝尔·卢米斯这是一本描写巴菲特经历和投资理念的书。有不少经典概念定理。07巴菲特的信(有好的资产也得熬得住,不要跳槽去别的快船,结果发现自己那条慢船突然加速成快艇了)>>格雷厄姆和巴菲特并非在所有问题上都保持一致,但他们共同的观念就是:如果以非常低的价格购进某种资产,假以时日,基本上都能获得回报。08你能跑赢股市吗(节选)(我个人觉得市场大多数时候有效,因为资金是最聪明的。但是乌
- 抽象代数精解【2】
叶绿先锋
基础数学与应用数学抽象代数人工智能
文章目录群消去律的意义消去律与群的其他性质总结难点与例子例子参考文献群下面由文心一言生成群中的消去律是群论中的一个基本定理,它描述了群中元素之间的一种特殊关系。具体来说,群中的消去律包含左右两个方向,可以表述为:左消去律:若(ab=ac)(ab=ac)(ab=ac)且(a,b,c∈G)(a,b,c\inG)(a,b,c∈G)其中(G)是一个群,则b=c。右消去律:若(ba=ca)(ba=ca)(b
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 青年干部筑牢理想信念根基
夕阳醉year
习近平总书记指出:“年轻干部接好班,最重要的是接好坚持马克思主义信仰、为共产主义远大理想和中国特色社会主义共同理想而奋斗的班。”“坚定理想信念不是一阵子而是一辈子的事,要常修常炼、常悟常进,无论顺境逆境都坚贞不渝,经得起大浪淘沙的考验。”习近平总书记的重要论述,深刻揭示了理想信念的极端重要性,精辟阐明了年轻干部成长为对党和人民忠诚可靠、堪当时代重任栋梁之才的努力方向和实践路径。坚持理论联系实际。列
- KAN网络技术最全解析——最热KAN能否干掉MLP和Transformer?(收录于GPT-4/ChatGPT技术与产业分析)
u013250861
#LLM/Transformertransformerchatgpt深度学习
KAN网络结构思路来自Kolmogorov-Arnold表示定理。MLP在节点(“神经元”)上具有固定的激活函数,而KAN在边(“权重”)上具有可学习的激活函数。在数据拟合和PDE求解中,较小的KAN可以比较大的MLP获得更好的准确性。相对MLP,KAN也具备更好的可解释性,适合作为数学和物理研究中的辅助模型,帮助发现和寻找更基础的数值规律。(点赞是我们分享的动力)MLP与KAN对比与传统的MLP
- 【ITK库学习】使用itk库进行图像滤波ImageFilter:模糊降噪
leafpipi
ITK学习图像处理c++算法
目录1、itkDiscreteGaussianImageFilter离散高斯2、itkBinomialBlurImageFilter二项式模糊3、itkSmoothingRecursiveGaussianImageFilter图像模糊可以削弱图像频谱的高频部门1、itkDiscreteGaussianImageFilter离散高斯该类通过图像与离散高斯算子(内核)的可分离卷积来模糊图像。如果Set
- Java 7.1 - 理论 & 算法 & 协议
没有韭菜的饺子
java开发语言
什么是CAP理论?C:Consistency一致性A:Availability可用性P:Partition分区容错性对于理论计算机科学,CAP定理指出,对于一个分布式系统而言,CAP中的三个只能同时满足两个。分区容错性:分布式系统出现网络分区的时候,仍然可以向外提供服务。*网络分区分布式系统中,多个节点之间的网络本来是相连的。但现在因为某些原因,某些节点之间不再连通,网络会被分成多个区域,这就叫网
- 心理学效应系列|取法乎上,得乎其中——吉格勒定理
熙桓心理
吉格勒定理是由美国行为学家J·吉格勒提出的。设定一个高目标就等于达到了目标的一部分。如果从一开始就怀有高远的目标,就会呈现出与众不同的眼界,逐渐形成良好的工作习惯和方法,让每一步都朝着正确的方向前进。气魄大方可成大,起点高才能至高。美国伯利恒钢铁公司的创建者齐瓦勃出生在乡村,所受的教育水平也很低。18岁那年,齐瓦勃到钢铁大王卡内基所属的一个建筑工地打工。一踏进建筑工地,齐瓦勃就抱定了要做同事中最优
- 什么是奈奎斯特采样定理
达西西66
奈奎斯特采样定理
奈奎斯特采样定理,也被称为奈奎斯特定理或奈氏定理,是信号处理领域中至关重要的原理之一。它揭示了在数字信号处理中如何正确地采样模拟信号,以避免信息丢失和混叠现象。本文将深入探讨奈奎斯特采样定理的原理、应用和实例,以及其在通信、音频处理和图像处理等领域的重要性。奈奎斯特采样定理的基本原理奈奎斯特采样定理是由美国工程师哈里·S·奈奎斯特(HarryNyquist)在20世纪20年代提出的。该定理的核心思
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分