- Python实现关联规则推荐
这孩子谁懂哈
PythonMachineLearningpython关联规则机器学习
1.什么关联规则关联规则(AssociationRules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。关联规则挖掘的最经典的例子就是沃尔玛的啤酒与尿布的故事,通过对超市购物篮数据进行分析,即顾客放入购物篮中不同商品之间的关
- 每天一个数据分析题(五百)- 关联规则
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
广为流传的“啤酒与尿布”的故事,其背后的模型实际上是哪一类?A.分类(Classification)B.分群(Clustering)C.关联(Association)D.预测(Prediction)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库
- 性能测试手册:一分钟掌握LoadRunner关联函数应该放在那
Criss陈磊
为什么要有关联函数如果客户端的某个请求是随着服务器端的响应而动态变化,我们就需要用到关联,通过关联函数获取动态的返回值,传给后面的函数使用,完成测试上下文的流程串联。定义:在脚本回放过程中,客户端发出请求,通过关联函数所定义的左右边界值(也就是关联规则),在服务器返回的响应内容中查找,得到相应的值,将其存储的变量中,后续请求再通过对应变量指向的内存取出数据发给服务器发,已完成正确的业务流程的性能测
- 【机器学习笔记】14 关联规则
RIKI_1
机器学习机器学习笔记人工智能
关联规则概述关联规则(AssociationRules)反映一个事物与其他事物之间的相互依存性和关联性。如果两个或者多个事物之间存在一定的关联关系,那么,其中一个事物就能够通过其他事物预测到。关联规则可以看作是一种IF-THEN关系。假设商品A被客户购买,那么在相同的交易ID下,商品B也被客户挑选的机会就被发现了。有没有发生过这样的事:你出去买东西,结果却买了比你计划的多得多的东西?这是一种被称为
- 【机器学习笔记】12 聚类
RIKI_1
机器学习机器学习笔记聚类
无监督学习概述监督学习在一个典型的监督学习中,训练集有标签,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。无监督学习与此不同的是,在无监督学习中,我们的数据没有附带任何标签,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面。主要的无监督学习方法聚类(Clustering)如何将教室里的学生按爱好、身高划分为5类?降维(DimensionalityReductio
- R语言Apriori关联规则、kmeans聚类、决策树挖掘研究京东商城网络购物用户行为数据可视化|附代码数据
数据挖掘
全文链接:http://tecdat.cn/?p=30360最近我们被客户要求撰写关于网络购物用户行为的研究报告,包括一些图形和统计输出。随着网络的迅速发展,依托于网络的购物作为一种新型的消费方式,在全国乃至全球范围内飞速发展电子商务成为越来越多消费者购物的重要途径。我们被客户要求撰写关于网络购物行为的研究报告。项目计划使用数据挖掘的方法,以京东商城网购用户的网络购物数据为基础,对网络购物行为的三
- Apriori介绍及代码批注
Fishermen_sail
机器学习数据挖掘scikit-learnpython机器学习推荐算法
一、Apriori原理解析1.概述关联规则分析是数据挖掘中最活跃的研究方法之一,目的是在一个数据集中找到各项之间的关联关系,而这种关系并没有在数据中直接体现出来。以超市的销售数据为例,当存在很多商品时,可能的商品组合数量达到了令人望而却步的程度,这是提取关联规则的最大困难。因此各种关联规则分析算法从不同方面入手减少可能的搜索空间大小以及减少扫描数据的次数。Apriori算法是最经典的挖掘频繁项集的
- 基于关联规则的计算机类考研院校推荐系统
计算机专业毕业设计
关联规则算法,就是我们常说的Apriori算法,利用该算法,通过对数据的关联性进行了分析和挖掘,挖掘出的这些信息在决策制定过程中具有重要的参考价值。本系统主要是根据该算法,帮助考研的学生,选择和推荐学校,方便学生选择到合适的学校。项目开发采用Eclipse做为开发工具,tomcat8.5以上版本,jdk1.8以上。系统采用Spring+SpringMVC+Mybits框架,实现了网站的建设。功能介
- 关联规则算法及其画图(python
天玑y
#机器学习算法python开发语言笔记数学建模数据分析大数据
目录1.代码:2.效果:小结:1.代码:算法的介绍和原理就不多阐述了,链接放在这里:介绍和原理1介绍和原理2importnumpyasnpimportseabornassnsimportpandasaspdfrommatplotlibimportpyplotaspltfrommlxtend.frequent_patternsimportapriorifrommlxtend.frequent_pat
- 01 数据分析与可视化概述
flysh05
Python数据分析数据挖掘python
1.数据分析数据分析DataAnalysis是数学与计算机科学相结合的产物,指使用适当的统计分析方法对搜集来的大量数据进行分析,提取有用信息并形成结论,从而对数据加以详细研究和概括总结的过程。数据挖掘则指的是从大量的,不完全的,有噪声的,模糊的和随机的实际应用数据中,通过应用聚合,分类,回归和关联规则等技术,挖掘潜在价值的过程。数据分析有狭义和广义之分。狭义的数据分析指根据分析目的,采用对比分析,
- 分润结算
花丽林
我是林丽花,今天是我每天一篇文章的第142篇。今天有位授权点负责人问我,书友通过她的二维码入会成为正式会员,是否归属于她的授权点,线上部分分润该如何计算?这里面涉及两个问题,一个是强关联规则;另一方面是授权点分润该如何结算。书友通过授权点负责人二维码直接入会,是归属于该授权点的业绩。解析:凡是通过该授权点的推广大使、阅读大使直接入会的,所有业绩都归属该授权点后台;如果是通过该授权点推广大使、阅读大
- 挖掘建模概述
三块给你买麻糬_31c3
1、概述1.1数据挖掘的基本任务基本任务包括分类与预测、聚类分析、关联规则、时序模式、偏差检测、智能推荐等方法,通过完成这些任务,发现数据的价值,指导商业抉择,带来商业新价值。1.2数据挖掘建模过程1.2.1定义挖掘目标一般可以分为三类:把握趋势和模式、预测或分类、求最优解1.2.2数据取样常见的抽样方法包括:随机抽样、等距抽样、分层抽样、顺序抽样、分类抽样1.2.3数据探索这一步考虑的是数据集的
- LoadRunner——关联
樑衛東
1,什么是关联关联(correlation)就是把脚本中那些写固定的数据,转变成是来自服务器发送的、动态的、每次都不一样的数据。在脚本回放过程中,客户端发出请求,通过关联函数所定义的左右边界值(也就是关联规则),在服务器所响应的内容中查找,得到相应的值,将值以变量的形式替换录制时的固定值,从而向服务器发出新的正确的请求,这种动态获得服务器响应内容的方法被称作关联。2,为什么要使用关联为了保证Ses
- 常用数据分析模型与方法
kalvin_y_liu
数据分析数据挖掘
常用数据分析模型与方法在进行数据分析过程中,通常需要使用各种模型来证明自己的分析观点,一是为了使自己的结论更具备说服力,二是让自己的论证过程更具备逻辑性和条理性。FineBI推出部分数据分析方法,帮助用户更好的使用BI进行数据分析。分析类型模型/方法对外用户分析RFM分析对外用户分析ABC分析对外用户分析波士顿矩阵图对外用户分析购物篮分析-关联规则对外用户分析留存分析对外用户分析用户画像分析对外用
- 【机器学习】【贝叶斯算法】Python实战演练贝叶斯算法中的关联规则
hi_ly_51
机器学习算法python
关联规则概念一个样本称为一个事务每个事务由多个属性来确定,这里的属性称为“项”多个项组成的集合为“项集”X==>Y:X和Y是项集;X称为规则前项;Y称为规则后项支持度支持度(support):一个项集或者规则在所有事务中出现的频率,σ(X):表示项集X的支持度计数·项集X的支持度:s(X)=σ(X)N·规侧X==>Y表示物品集X对物品集Y的支持度,也就是物品集X和物品集Y同时出现的概率·某天共有1
- 数据挖掘——考试复习
hzx99
考试复习数据挖掘考试复习
数据挖掘——考试复习考点填空欧几里得距离余弦相似度简单匹配系数Jaccard系数数据集的ClassficationError数据集的Gini值召回率和精度问答支持向量机的“最大边缘”原理软边缘支持向量机的基本工作原理非线性支持向量机的基本工作原理计算朴素贝叶斯分类ID3决策树、计算数据集的熵、计算划分的期望信息、信息增益计算欧式距离、KNN分类给定事务数据集、求频繁K项集,求指定的关联规则的支持度
- Sentinel之道:流控模式解析与深度探讨
一只牛博
#sentinelsentinel
欢迎来到我的博客,代码的世界里,每一行都是一个故事Sentinel之道:流控模式解析与深度探讨前言流控模式基础:Sentinel的多面光环直接模式:规则之箭,直指核心直接模式的核心概念:实际案例演示:关联模式:数字共振的奇妙舞步关联模式的核心概念:使用场景和配置关联规则:链路模式:数字交响乐的协调者链路模式的核心概念:示例场景演示:多维度流控:灵活管理不同场景的流量结合直接、关联和链路模式:多维度
- 看书标记【数据科学:R语言实战 1】
小胡涂记
R语言资料实现r语言开发语言
看书标记——R语言Chapter1模式的数据挖掘1.1聚类分析1.1.1k-means聚类用法示例1.1.2k-medoids聚类用法示例1.1.3分层聚类用法示例1.1.4期望最大化(EM)用法示例1.1.5密度估计用法示例1.2异常检测1.2.1显示异常值示例1示例2示例31.2.2计算异常值示例1(用name函数创建异常)示例2(DMwR中的lofactor函数)1.3关联规则(购物篮分析)
- 关联规则——Apriori算法与FP-Growth算法
CYYUN
Apriori算法•Apriori算法将发现关联规则的过程分为两个步骤:1、通过迭代,检索出事务数据库中的所有频繁项集,即支持度不低于用户设定的阈值的项集2、利用频繁项集构造出满足用户最小置信度的规则。其中,检索所有频繁项集是该算法的核心,占整个计算量的大部分•Apriori算法的重要性质性质1:频繁项集的子集必为频繁项集。如果{B,C}是频繁的,那么{B},{C}也一定是频繁的性质2:非频繁项集
- 天池赛:淘宝用户购物行为数据可视化分析
wjzeroooooo
数据分析数据可视化数据分析python
目录前言一、赛题介绍二、数据清洗、特征构建、特征可视化1.数据缺失值及重复值处理2.日期分离,PV及UV构建3.PV及UV可视化4.用户行为可视化4.1各个行为的面积图(以UV为例)4.2各个行为的热力图5.转化率可视化三、RFM模型1.构建R、F、M2.RFM的数据统计分布3.计算RFM得分及组合4.RFM组合柱图及得分饼图可视化5.RFM3D柱图展示四、商品类型关联分析4.1.提取关联规则4.
- 关联规则挖掘算法的介绍
Clearlovekui9
学号:17020110019姓名:高少魁【嵌牛导读】关联规则挖掘算法是数据挖掘中的一种常用算法,用于发现隐藏在大型数据集中令人感兴趣的频繁出现的模式、关联和相关性。这里将对该算法进行简单的介绍,之后通过Apriori算法作为实例演示算法执行结果。【嵌牛鼻子】数据挖掘关联规则挖掘python【嵌牛正文】一、算法原理1、基本概念关联规则用于发现隐藏在大型数据集中令人感兴趣的频繁出现的模式、关联和相关性
- 大数据关联规则挖掘:Apriori算法的深度探讨
星川皆无恙
机器学习与深度学习大数据人工智能大数据大数据算法深度学习人工智能pytorchpython
文章目录大数据关联规则挖掘:Apriori算法的深度探讨一、简介什么是关联规则挖掘?什么是频繁项集?什么是支持度与置信度?Apriori算法的重要性应用场景二、理论基础项和项集支持度(Support)置信度(Confidence)提升度(Lift)Apriori原理三、Apriori算法概述算法步骤频繁项集生成关联规则生成优缺点优点缺点四、实战应用购物篮分析输入和输出Python实现代码示例和输出
- vivado JTAG链、连接、IP关联规则
cckkppll
fpga开发
JTAG链这列出了定义板上可用的不同JTAG链。每个链都列在下面以及链的名称,以及定义名称和链中组件的位置:<jtag_chain>标记指定具有name=属性的链的名称。标记列出中的每个组件。详细信息如下表所示:连接部分定义了不同组件之间的连接。这个<connection>标记标识与连接相关联的两个组件。这个<connection_map>标记描述了两个组件之间的总线连接。详细信息VivadoDe
- 机器学习之聚类-2D数据类别划分
小旺不正经
人工智能机器学习聚类支持向量机人工智能
无监督学习(UnsupervisedLearning)机器学习的一种方法,没有给定事先标记过的训练示例,自动对输入的数据进行分类或分群。方式一:站着或坐着方式二:全身或半身方式三:蓝眼球或不是蓝眼球没有对与错寻找数据的共同点优点:算法不受监督信息(偏见)的约束,可能考虑到新的信息不需要标签数据,极大程度扩大数据样本主要应用:聚类分析、关联规则、维度缩减应用最广:聚类分析(clustering)聚类
- Python数据分析基础ReadingDay14_关联分析FP_growth
放翁lcf
readingFoundationsforAnalysiswithPythonDay13《Python数据分析基础》封面之前我们已经完成了《Python数据分析基础》这本书的学习,之后的两篇笔记是关于关联分析的。这是第二篇。上一篇笔记我们讲到了关联分析的基本概念和应用场景,以及挖掘数据集中关联规则的Apriori算法,通过具体代码实现了一个Apriori算法,在上一篇笔记的最后提到Apriori算
- 关联规则分析(Apriori算法
天玑y
#机器学习算法数学建模大数据机器学习人工智能数据分析数据挖掘
目录1.关联规则:2.关联规则算法:3.Apriori算法原理:3.1先找出频繁项集3.2是否能被设置为关联规则3.Apriori算法原理:小结:1.关联规则:什么是关联规则?可以归纳为X->Y,就是X发生的情况下很可能会发生Y比如:啤酒和尿布,就是尿布->啤酒这么一个强关联规则,含义是:如果顾客购买尿布,那么他很有可能买啤酒。啤酒和尿布的关联规则故事沃尔玛公司数据仓库里集中了其各门店的详细原始交
- 在线项目实习分享:股票价格形态聚类与收益分析
泰迪智能科技
大数据在线实习项目聚类数据挖掘机器学习
01前置课程数据挖掘基础数据探索数据预处理数据挖掘算法基础Python数据挖掘编程基础Matplotlib可视化Pyecharts绘图02师傅带练行业联动与轮动分析通过分析申银万国行业交易指数的联动与轮动现象,获得有意义的行业轮动关联规则,并在此基础上设计量化投资策略。项目技术目标如下:1、利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。2、量化投资策略,为投资者提供高
- 基于关联规则与可平面图的商品摆放规划-----实验报告
FakeOccupational
数据分析
基于关联规则与可平面图的商品摆放规划摘要:本文先对northwind数据库介绍与数据描述与简单分析(数据异常值处理,订单地址的文本挖掘),然后对购买的商品使用关联规则算法,进行关联分析与商品的购买情况分析,由关联规则的发现结果,使用图论方法分析商品的摆放图。关键词:Northwind数据库;关联规则;可平面图;1.Northwind数据库数据介绍图1Northwind数据库的安装文件执行文件中的S
- 啤酒和尿不湿?购物篮分析、商品关联分析和关联规则算法都给你搞清楚(上—理论篇)
DataMiningSharer
应用案例特征工程数据可视化python数据挖掘mysql
不管是不是搞数据分析的,相信应该都听过啤酒尿不湿的故事,说的是美国的沃尔玛超市管理人员分析销售数据时发现了一个令人难以理解的现象:“啤酒”与“尿布湿”这两件看上去毫无关系的商品会经常出现在同一个购物篮中。经过后续调查他们发现,这种现象大多出现在年轻的父亲身上。原来在有婴儿的美国家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布湿。父亲在购买尿布湿的同时,往往会顺便为自己购买啤酒,这就出现
- 自然语言处理5——发掘隐藏规律 - Python中的关联规则挖掘
theskylife
数据分析数据挖掘自然语言处理自然语言处理pythoneasyui数据挖掘数据分析
目录写在开头1.了解关联规则挖掘的概念和实际应用1.1关联规则挖掘在市场分析和购物篮分析中的应用1.2关联规则的定义和基本原理1.3应用场景2.使用Apriori算法和FP-growth算法进行关联规则挖掘2.1Apriori算法的工作原理和实现步骤2.2FP-growth算法的优势和使用方法2.3Apriori算法vsFP-growth算法3.结果解读和关联规则可视化3.1如何解读挖掘出的关联规
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交