LeetCode #661 Image Smoother 图片平滑器

661 Image Smoother 图片平滑器

Description:
Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.

Example:

Example 1:

Input:
[[1,1,1],
 [1,0,1],
 [1,1,1]]
Output:
[[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]

Explanation:
For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0

Note:

The value in the given matrix is in the range of [0, 255].
The length and width of the given matrix are in the range of [1, 150].

题目描述:
包含整数的二维矩阵 M 表示一个图片的灰度。你需要设计一个平滑器来让每一个单元的灰度成为平均灰度 (向下舍入) ,平均灰度的计算是周围的8个单元和它本身的值求平均,如果周围的单元格不足八个,则尽可能多的利用它们。

示例 :

示例 1:

输入:
[[1,1,1],
 [1,0,1],
 [1,1,1]]
输出:
[[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]

解释:
对于点 (0,0), (0,2), (2,0), (2,2): 平均(3/4) = 平均(0.75) = 0
对于点 (0,1), (1,0), (1,2), (2,1): 平均(5/6) = 平均(0.83333333) = 0
对于点 (1,1): 平均(8/9) = 平均(0.88888889) = 0

注意:

给定矩阵中的整数范围为 [0, 255]。
矩阵的长和宽的范围均为 [1, 150]。

思路:

  1. 判断 8个方向进行计算, 注意边界条件即可
  2. 可以用偏移数组简化计算
  3. 在原数组外面包裹一层 None(或者小数, 能与原数据区分即可), 可以减少代码量
    时间复杂度O(mn), 空间复杂度O(1), m为矩阵宽度, n为矩阵高度

代码:
C++:

class Solution 
{
public:
    vector> imageSmoother(vector>& M) 
    {
        vector> result = M;
        int row = M.size(), col = M[0].size();
        for (int i = 0; i < row; i++) for (int j = 0; j < col; j++) 
        {
            int count = 1, sum = M[i][j];
            if (i > 0) 
            {
                ++count;
                sum += M[i - 1][j];
                if (j > 0) 
                {
                    ++count;
                    sum += M[i - 1][j - 1];
                }
                if (j < col - 1) 
                {
                    ++count;
                    sum += M[i - 1][j + 1];
                }
            }
            if (i < row - 1) 
            {
                ++count;
                sum += M[i + 1][j];
                if (j > 0) 
                {
                    ++count;
                    sum += M[i + 1][j - 1];
                }
                if (j < col - 1) 
                {
                    ++count;
                    sum += M[i + 1][j + 1];
                }
            }
            if (j > 0) 
            {
                ++count;
                sum += M[i][j - 1];
            }
            if (j < col - 1) 
            {
                ++count;
                sum += M[i][j + 1];
            }
            result[i][j] = sum / count;
        }
        return result;
    }
};

Java:

class Solution {
    public int[][] imageSmoother(int[][] M) {
        int row = M.length, col = M[0].length, result[][] = new int[row][col];
        for (int i = 0; i < row; i++) for (int j = 0; j < col; j++) result[i][j] = calculate(M, i, j, row, col);
        return result;
    }
    
    private final int x[] = {-1, 1, 0, 0, -1, -1, 1, 1}, y[] = {0, 0, -1, 1, -1, 1, -1, 1};
    
    private int calculate(int[][] M, int i, int j, int row, int col) {
        int count = 1, sum = M[i][j];        
        for (int k = 0; k < 8; k++) {
            int nextX = i + x[k], nextY = j + y[k]; 
            if (nextX >= 0 && nextX < row && nextY >= 0 && nextY < col) {
                count++;
                sum += M[nextX][nextY];
            }
        }
        return sum / count;
    }
}

Python:

class Solution:
    def imageSmoother(self, M: List[List[int]]) -> List[List[int]]:
        row, col, result = len(M), len(M[0]), [[0] * len(M[0]) for _ in range(len(M))]
        M = [[None] * (col + 2)] + [[None] + i + [None] for i in M] + [[None] * (col + 2)]
        for i in range(1, row + 1):
            for j in range(1, col + 1):
                temp = [M[i - 1][j - 1], M[i][j - 1], M[i + 1][j - 1], M[i - 1][j], M[i][j], M[i + 1][j], M[i - 1][j + 1], M[i][j + 1], M[i + 1][j + 1]]
                temp = [k for k in temp if k is not None]
                result[i - 1][j - 1] = sum(temp) // len(temp)
        return result

你可能感兴趣的:(LeetCode #661 Image Smoother 图片平滑器)