Flink 修炼——flink1.12自定义redis sink

最近代码从11升级到了12,由于此次版本变动,废弃了很多api,导致代码不兼容。如原来的ta b leEnv中注册registerTablesink和registerTableSource方法

Flink 修炼——flink1.12自定义redis sink_第1张图片
image.png
    /**
     * Registers an external {@link TableSink} with given field names and types in this
     * {@link TableEnvironment}'s catalog.
     * Registered sink tables can be referenced in SQL DML statements.
     *
     * 

Temporary objects can shadow permanent ones. If a permanent object in a given path exists, it will * be inaccessible in the current session. To make the permanent object available again one can drop the * corresponding temporary object. * * @param name The name under which the {@link TableSink} is registered. * @param fieldNames The field names to register with the {@link TableSink}. * @param fieldTypes The field types to register with the {@link TableSink}. * @param tableSink The {@link TableSink} to register. * @deprecated Use {@link #executeSql(String) executeSql(ddl)} to register a table instead. */ @Deprecated void registerTableSink(String name, String[] fieldNames, TypeInformation[] fieldTypes, TableSink tableSink)

说明中要求通过 executeSql(ddl) 的方法注册一个表。

既然要通过ddl创建,那就要自定义一个redis 的connector。

flink自定的connector是借助 TableFactory spi发现注册的。

所以一共需要实现两个重要的类。

Flink 修炼——flink1.12自定义redis sink_第2张图片
image.png
Flink 修炼——flink1.12自定义redis sink_第3张图片
image.png

1.RedisDynamicTableSourceFactory类

自定义的facory类只需要实现 DynamicTableSinkFactory 接口即可。

import com.iqiyi.talos.engine.operators.sink.dynamic.RedisDynamicTableSink;
import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.factories.DynamicTableSinkFactory;
import org.apache.flink.table.factories.FactoryUtil;

import java.util.HashSet;
import java.util.Set;

/**
 * @ClassName RedisDynamicTableSourceFactory
 * @Description 自定义RedisSinkFactory
 * @Author zwc
 * @Date 2021-01-11 11:44
 * @Version 1.0
 **/
public class RedisDynamicTableSourceFactory implements DynamicTableSinkFactory {
//    public static final ConfigOption port = ConfigOptions.key("host").stringType().noDefaultValue();


    @Override
    public DynamicTableSink createDynamicTableSink(Context context) {
        final FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
        helper.validate();
        ReadableConfig options = helper.getOptions();
        return new RedisDynamicTableSink(options);
    }
    //connector = "redis" 声明连接器名称
    @Override
    public String factoryIdentifier() {
        return "redis";
    }

    @Override
    public Set> requiredOptions() {
        Set> options = new HashSet();
        return options;
    }

    @Override
    public Set> optionalOptions() {
        Set> options = new HashSet();
//        options.add(port);
        return options;
    }
}

createDynamicTableSink: 校验ddl中 with(...) 附加的选项,并且从CatalogTable 初始化实例,将Options附加选项加载到上下文Context中。

factoryIdentifier: 连接器的名称

requiredOptions:必填参数

optionalOptions:可选参数

2.RedisDynamicTableSink类

自定义的 sink类实现 DynamicTableSink 接口

import com.iqiyi.talos.engine.job.EngineContext;
import com.iqiyi.talos.engine.operators.function.CollectionTableSinkFunction;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.sink.SinkFunctionProvider;

/**
 * @ClassName RedisDynamicTableSink
 * @Description TODO
 * @Author zwc
 * @Date 2021-01-11 15:41
 * @Version 1.0
 **/
public class RedisDynamicTableSink implements DynamicTableSink {

    private ReadableConfig options;

    private EngineContext ctx;

    public RedisDynamicTableSink(ReadableConfig options) {
        this.options = options;
        ctx = EngineContext.getContext();
    }


    @Override
    public ChangelogMode getChangelogMode(ChangelogMode requestedMode) {
        return ChangelogMode.insertOnly();
    }

    @Override
    public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {

        CollectionTableSinkFunction collectionTableSinkFunction = new CollectionTableSinkFunction(ctx.getDeploySite(), ctx.getSimpifiedName());
        return SinkFunctionProvider.of(collectionTableSinkFunction);
    }

    @Override
    public DynamicTableSink copy() {
        return new RedisDynamicTableSink(this.options);
    }

    @Override
    public String asSummaryString() {
        return "my_redis_sink";
    }
}

getChangelogMode: 设置sink 是 insert only模式(目前只支持这种模式)

getSinkRuntimeProvider: 这里就是执行sink的具体逻辑了。这里可以直接使用flink 提供的redis-connector

        
            org.apache.bahir
            flink-connector-redis_2.11
            1.0
        
        RedisMapper stringRedisMapper = new RedisMapper() {
            //返回对应Redis命令
            @Override
            public RedisCommandDescription getCommandDescription() {
                return new RedisCommandDescription(RedisCommand.SET);
            }
            //从数据中获取对应Key
            @Override
            public String getKeyFromData(RowData rowData) {
                StringData string = rowData.getString(0);
                return string;
            }
            //从数据中获取对应Value
            @Override
            public String getValueFromData(RowData rowData) {
                String s = rowData.toString();
                return s;

由于此处我需要自定义redis数据结构,所以自己实现了RichFunction

    @Override
    public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {

        CollectionTableSinkFunction collectionTableSinkFunction = new CollectionTableSinkFunction(ctx.getDeploySite(), ctx.getSimpifiedName());
        return SinkFunctionProvider.of(collectionTableSinkFunction);
    }
/**
 * @ClassName CollectionTableSinkFunction
 * @Description TODO
 * @Author zwc
 * @Date 2021-01-12 16:51
 * @Version 1.0
 **/

import com.alibaba.fastjson.JSON;
import com.iqiyi.talos.common.JedisClient;
import com.iqiyi.talos.engine.enums.DeploySite;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.table.data.RowData;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * 这里定义了当接收到一条数据时,该如何 sink 的具体逻辑
 */
public class CollectionTableSinkFunction extends RichSinkFunction {
    private static Logger LOG = LoggerFactory.getLogger(CollectionTableSink.CollectionTableSinkFunction.class);
    private static Map> map = new ConcurrentHashMap<>();
    private DeploySite deploySite;
    private String jobName;
    private static final Object lock = new Object();

    public CollectionTableSinkFunction(DeploySite deploySite, String jobName) {
        this.deploySite = deploySite;
        this.jobName = jobName;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        LOG.info("OPEN!");
    }

    @Override
    public void invoke(RowData row, Context context) throws Exception {
        String operatorName = row.getString(0).toString();
        String value = row.getString(1).toString();
        //operatorName source 1

        map.compute(operatorName, (k,v) -> {
            if(v==null) {
                v = new ArrayList<>();
                v.add(value);
            } else {
                v.add(value);
            }
            return v;
        });
        LOG.info("put to collectionMap. [{},{}] ", operatorName, value);
        LOG.info("mapSize:" + map.size());
    }

    public Map> getContent() {
        return map;
    }

    @Override
    public void close() {
        synchronized (lock) {
            Map> map = getContent();
            String key = "TalosMockJob_" + jobName;
            String value = JSON.toJSONString(map);
            LOG.info("Send Mock result to redis. key:{}, value:{}", key, value);
            long ttl = 24 * 3600 * 1000;
            try {
                JedisClient.get(deploySite.name()).setValue(key, value, ttl);
            } catch (Exception e) {

            }
        }
    }
}

3.最后一步spi

Flink 修炼——flink1.12自定义redis sink_第4张图片
image.png

把RedisDynamicTableSourceFactory类包路径填进去即可

4.使用

 ctx.getTableEnv().executeSql("create table MockJob_Data_Table (\n" +
                "    operatorName STRING," +
                "    data STRING" +
                ") WITH (\n" +
                "    'connector' = 'redis'\n" +
                ")");

你可能感兴趣的:(Flink 修炼——flink1.12自定义redis sink)