- # AI计算模式 神经网络模型 深度神经网络 多层感知机 卷积神经网络 循环神经网络 长短期记忆网络 图像识别、语音识别、自然语言 轻量化模型和模型压缩 大模型分布式并行
EwenWanW
AGI人工智能神经网络dnn
AI计算模式AI技术发展至今,主流的模型是深度神经网络模型。近20年来,神经网络模型经过多样化的发展,模型总体变得越来越复杂和庞大,对硬件设备的计算速度、存储能力、通信速度的要求越来越高。尽管学者已经提出了许多方法优化模型结构,降低模型的参数量,但是伴随着人们对AI能力的要求越来越高,模型变得更大是不可避免的。原先单CPU可进行模型的训练与推理,如今需要使用GPU、TPU等设备,并通过分布式并行的
- CSGHub 快速部署指南
算法llm
CSGHub快速部署指南OmnibusCSGHub是OpenCSG推出的使用Docker快速部署CSGHub的一种方式,主要用于快速功能体验和测试。Docker部署方式允许用户以较低成本在本地计算机部署CSGHub。此种部署方法非常适合概念验证和测试,使用户能够立即访问CSGHub的核心功能(包括模型,数据集管理、Space应用创建以及模型的推理和微调(需要GPU))。本文将带您一步步完成部署。什
- 详细介绍 NVIDIA GeForce RTX 系列,各显卡配置参数(长期更新 - 2024.12)
JiaWen技术圈
人工智能深度学习机器学习gpu算力AIGC人工智能图形渲染
NVIDIAGeForceRTX系列是NVIDIA面向消费级市场的高性能GPU产品线,注重提供高性能的图形处理能力和游戏特性。主要面向游戏玩家和普通用户,同时也被广泛用于深度学习推理和训练等计算密集型任务。主要GPU产品有:50Series、40Series、30Series、20Series、10Series。其主要参数如下:NVIDIAGeForceRTX50Series规格架构:Blackw
- 对本地部署的ChatGLM模型进行API调用
BBluster
LLMpython开发语言语言模型
ChatGLM作为一个小参数模型,给予了我们在本地部署LLM的条件,接下来我将展示如何使用python对本地部署的ChatGLM模型进行API调用对于如何部署本地ChatGLM模型我们可以访问本地化部署大语言模型ChatGLM接下来我首先分享api调用的测试代码:importtimeimportrequests#测试GPU运行是否成功deftest_function_1():importtorch
- NVIDIA GPU架构
gy笨瓜
NVIDIAGPU
本文主要为1.NVIDIAGeForce800系列GPU架构2.GTX1050TiGPU架构NVIDIAGeForce800系列型号芯片代号架构GeForce800MGF117FermiGeForce810M(GF117)GF117FermiGeForce810M(GK107)GK107KeplerGeForce820M(GF117)GF117FermiGeForce820M(GK107)GK10
- GPU 集群和分布式计算
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《GPU集群和分布式计算》关键词:GPU集群、分布式计算、CUDA、OpenACC、OpenMP、性能优化、故障处理、案例分析摘要:本文详细探讨了GPU集群和分布式计算的基本概念、架构、编程模型以及应用场景。通过剖析GPU集群在多个领域的实际应用,探讨了性能优化和故障处理的方法,并提供了若干案例以加深理解。文章旨在为读者提供一个全面而深入的GPU集群和分布式计算的知识框架。《GPU集群和分布式计算
- 360智算中心万卡GPU集群架构分析
科技互联人生
科技数码人工智能硬件架构系统架构人工智能
360智算中心:万卡GPU集群落地实践 360智算中心是一个融合了人工智能、异构计算、大数据、高性能网络、AI平台等多种技术的综合计算设施,旨在为各类复杂的AI计算任务提供高效、智能化的算力支持。360智算中心不仅具备强大的计算和数据处理能力,还结合了AI开发平台,使得计算资源的使用更加高效和智能化。360内部对于智算中心的核心诉求是性能和稳定性,本文将深入探讨3
- 3D高斯泼溅原理及实践【3DGS】
新缸中之脑
3d
人工智能可能是我们这个时代的主要领域之一,它几乎可以用于从驾驶汽车到医疗保健甚至能够预防失明等所有领域,最近提出了一种新的3D重建方法。SNGULAR及其人工智能团队希望了解有关3D重建技术的最新更新的更多信息。目前可用于3D重建的许多SOTA方法需要大量CPU/GPU使用率来处理场景或渲染场景,其中一些甚至需要两者兼而有之。SIGGRAPH2023GaussianSplatting上提出的新方法
- python 随机数 随机种子
AI算法网奇
python宝典python开发语言后端
目录神经网络推理随机种子gpu新版:神经网络推理随机种子gpu:神经网络推理随机种子含npu:numpy.full创建相同矩阵python生成n个随机整数python随机数种子,每次获取相同的随机数随机在区间M内取不重复的N个随机数取一个范围内均匀不重复的随机数神经网络推理随机种子gpu新版:defset_random_seed(seed):"""Setrandomseeds."""random.
- 【软件设计】常用设计模式--观察者模式
秦哈哈
软件设计设计模式观察者模式
软件设计模式(四)观察者模式一、观察者模式(ObserverPattern)1.概念2.模式结构3.UML类图4.实现方式C#示例步骤1:定义观察者接口步骤2:定义主题接口步骤3:实现具体主题步骤4:实现具体观察者步骤5:使用观察者模式Java示例步骤1:定义观察者接口步骤2:定义主题接口步骤3:实现具体主题步骤4:实现具体观察者步骤5:使用观察者模式5.优点6.缺点7.应用场景二、观察者模式的变
- RocketMQ源码之消息刷盘分析
小虾米 ~
RocketMQrocketmq
前言刷盘是将内存中的消息写入磁盘,分为同步刷盘和异步刷盘。同步刷盘指一条消息写入磁盘才返回成功,异步刷盘指写入内存就返回成功,稍后异步线程刷盘。在创建CommitLog对象的时候,会初始化刷盘服务://代码位置:org.apache.rocketmq.store.CommitLogpublicCommitLog(finalDefaultMessageStoredefaultMessageStore
- 几个导致DeepFaceLab训练速度较慢的原因
AlphaFinance
多媒体AI技术人工智能python机器学习
可能有几个原因导致DeepFaceLab训练速度较慢:复杂度:DeepFaceLab的算法和模型较为复杂,需要处理大量数据和计算复杂的数学运算,这可能导致训练速度较慢。硬件配置:DeepFaceLab需要较高的计算机配置才能运行,包括较大的内存、高性能的GPU、快速的存储器等。如果你的计算机配置不够高,可能会导致训练速度较慢。数据量:DeepFaceLab需要大量的训练数据来训练模型,如果你的数据
- Vulkan研究一:概述Vulkan的使用流程
MeepoNJ
Vulkanc++图形渲染
1.创建Vulkan句柄设备Vulkan的初始化过程始于创建一个Vulkan实例(VkInstance)。每个Vulkan实例是相互独立的,彼此之间没有影响。在创建实例时,需要指定所需的层(layer)和扩展(extension)。若不确定可用的层或扩展,可以通过查询函数枚举它们。在获得VkInstance后,可以检测可用的GPU设备。每个GPU设备对应一个VkPhysicalDevice类型的句
- GPUStack使用
James506
AIServer人工智能GPULLMBGEGPU监控
1.概述官网:https://github.com/gpustackOpen-sourceGPUclustermanagerforrunninglargelanguagemodels(LLMs)https://github.com/gpustack/gpustack,ManageGPUclustersforrunningAImodelsGPUStack是一个用于运行AI模型的开源GPU集群管理器。
- 增强大型语言模型(LLM)可访问性:深入探究在单块AMD GPU上通过QLoRA微调Llama 2的过程
109702008
人工智能#ROCm#python语言模型llama人工智能
EnhancingLLMAccessibility:ADeepDiveintoQLoRAThroughFine-tuningLlama2onasingleAMDGPU—ROCmBlogs基于之前的博客《使用LoRA微调Llama2》的内容,我们深入研究了一种称为量化低秩调整(QLoRA)的参数高效微调(PEFT)方法。本次重点是利用QLoRA技术在单块AMDGPU上,使用ROCm微调Llama-2
- 小土堆学习笔记10(利用GPU训练于模型验证)
干啥都是小小白
pytorch学习——小土堆学习笔记深度学习
1.利用GPU训练GPU可优化操作如下操作方法1方法2数据获取判断是否可以使用GPU,如果可以直接model.cuda()先设定device,用的时候直接model.to(“device”)损失函数1.1利用以前实战模型训练(经过完整测试最高到70%左右的正确率)实战模型如下:小土堆学习笔记5(sequential与小实战)-CSDN博客具体代码如下:classmymodel(Module):de
- 前端开发之性能优化
水煮白菜王
前端前端面试性能优化前端javascript
本文章对各大学习技术论坛知识点,进行总结、归纳自用学习,共勉文章目录1.[CDN](https://www.bootcdn.cn/)2.懒加载3.缓存4.图片压缩5.图片分割6.sprite7.CodeSplitting8.gzip9.GPU加速10.Ajax11.TreeShaking12.ResourceHints技术或策略描述CDN(内容分发网络)提高网站访问速度和可靠性,通过全球分布的节点
- 安装CUDA Cudnn Pytorch(GPU版本)步骤
学乐乐
pytorch人工智能python
一.先看自己的电脑NVIDIA支持CUDA版本是多少?1.打开NVIDIA控制面板2.点击帮助---系统信息--组件我的支持CUDA11.6二.再看支持Pytorch的CUDA版本三.打开CUDA官网下载CUDA11.6下载好后,安装选择自定义然后安装位置(先去F盘建个CUDA-manger文件夹然后在里面建个CUDA11.6文件夹再在里面建立CUDA1CUDA2这两个文件夹前两个位置选到CUDA
- 【教程】Ollama 部署 MindSpore 训练的大模型
Hsiayukoo
llamapython
gguf-mindspore本项目(gguf-mindspore)帮助用户快速的将MindSpore生成的大模型的ckpt文件,转换为Ollama可以加载的GGUF格式文件,主要思路是针对已有的如Huggingface上的对应模型的GGUF文件,利用MindSpore生成的ckpt文件,替换掉GGUF文件中的张量信息部分,生成自己的GGUF文件。依赖gguf==0.6.0mindsporenump
- 如何有效控制 KV 缓存的内存占用,优化推理速度?
m0_70960708
笔记缓存
使用KV缓存技术的目的是在生成过程中计算过去tokens的键和值张量时,将这些张量存储(“缓存”)在GPU内存中,从而避免在每个生成步骤中重新计算这些tokens的键和值张量。KV缓存是一种妥协:我们以内存的消耗换取计算量的减少。在这篇文章中,我们将了解KV缓存的容量有多大、会带来哪些挑战,以及面对这些挑战最常用的应对策略是什么。01KV缓存的容量有多大?这相当简单:对于每个batch中每个序列的
- Golang学习笔记_28——工厂方法模式
LuckyLay
Golang学习笔记golang学习笔记设计模式工厂方法模式
Golang学习笔记_25——协程Golang学习笔记_26——通道Golang学习笔记_27——单例模式文章目录工厂方法模式1.介绍2.优点3.类图4.实现源码工厂方法模式1.介绍工厂方法模式(FactoryMethod)是一种创建型设计模式,它提供了一种创建对象的接口,但由子类决定要实例化的类是哪一个。工厂方法模式让类的实例化推迟到子类中进行2.优点解耦:将对象的创建与使用分离,客户端不需要知
- 鸿蒙Flutter实战:15-Flutter引擎Impeller鸿蒙化、性能优化与未来
星释
鸿蒙Flutter实战鸿蒙flutterharmonyos
Flutter技术原理Flutter是一个主流的跨平台应用开发框架,基于Dart语言开发UI界面,它将描述界面的Dart代码直接编译成机器码,并使用渲染引擎调用GPU/CPU渲染。渲染引擎的优势使用自己的渲染引擎,这也是Flutter与其他跨平台框架最大的区别。与ReactNative等高度依赖原生组件的框架不同,Flutter摆脱了原生组件依赖,界面布局更加灵活,多端展示效果高度一致。由于渲染引
- Vue3轮播图的实现:vue3-carousel的使用和配置
闲人陈二狗
html5vue.js
目录一、安装vue3-carousel二、引入三、轮播全局样式修改一、安装vue3-carousel官方文档:Gettingstarted|Vue3-carouselnpminstallvue3-carousel二、引入在Vue3项目中添加,这是一个简单的轮播demo://IfyouareusingPurgeCSS,makesuretowhitelistthecarouselCSSclassesi
- MacOS/C/C++下怎样进行软件性能分析(CPU/GPU/Memory)
捕鲸叉
软件调试和诊断软件调试软件验证
在macOS环境下进行C/C++软件性能分析,可以使用多种工具和技术来测量和优化CPU、GPU和内存的性能。macOS提供了丰富的性能分析工具,如Instruments、gprof、Perf、以及NVIDIA和Intel的专用工具。下面详细介绍了实现思想和操作方法。1.性能分析的目标CPU:分析CPU的使用情况,找出性能瓶颈、热点代码。GPU:分析GPU的使用情况,确保GPU资源被有效利用。内存:
- linux下jax-GPU安装
liu_zhaoda
深度学习-jaxlinuxpythonpytorch
安装命令详细内容可查看jax官方文档在已有cuda的情况下,先使用命令1,再使用命令2,即可完成安装命令1:linux下jax安装命令pipinstalljax[cpu]==0.3.25-fhttps://storage.googleapis.com/jax-releases/jax_releases.html将黑体部分,替换成想要的版本即可命令2:linux下jaxlibcuda安装命令pipi
- 英伟达最新的算力芯片Blackwell芯片名为GB200
算力资源比较多
算力智算大模型人工智能gpu算力语言模型大数据推荐算法
英伟达最新的算力芯片相关信息如下:Blackwell芯片:英伟达在2024年6月2日由创始人兼CEO黄仁勋宣布,其Blackwell芯片已开始投产。第一款Blackwell芯片名为GB200,被宣称为目前“全球最强大的芯片”。Blackwell芯片基于新的BlackwellGPU架构,专为人工智能模型设计。每个B200GPU包含2080亿个晶体管,GB200由两个这样的GPU和一个GraceCPU
- 大模型推理:vllm多机多卡分布式本地部署
m0_74824755
面试学习路线阿里巴巴分布式
文章目录1、vLLM分布式部署docker镜像构建通信环境配置2、其他大模型部署工具3、问题记录参考文献单台机器GPU资源不足以执行推理任务时,一个方法是模型蒸馏量化,结果就是会牺牲些效果。另一种方式是采用多台机器多个GPU进行推理,资源不足就堆机器虽然暴力但也是个不错的解决方法。值得注意的是多机多卡部署的推理框架,也适用于单机多卡,单机单卡,这里不过多赘述。1、vLLM分布式部署我的需求是Ubu
- UML类图详解(全网最无敌详解版(自封的))
可乐泡枸杞·
面向对象设计模式uml
UML类图详解鉴于很多同学反馈《面向对象设计模式》系列博客中的类图看不懂,所以博主贴心的单独写了一篇关于UML的文章在开始阅读之前,请点赞收藏关注,三连鼓励下博主UML(UnifiedModelingLanguage,统一建模语言)类图是面向对象建模的重要工具,用于描述系统的静态结构。类图通过展示类、接口及其之间的关系,帮助开发者理解和设计系统。本文将详细介绍类图中的各个元素及其线条和图像。类图的
- GPU介绍之GPU监控中,如何确定GPU忙碌程度
借雨醉东风
热点追踪人工智能大数据
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比