分布式系统数据一致性方案

CAP定理是由加州大学伯克利分校Eric Brewer教授提出来的,他指出WEB服务无法同时满足一下3个属性:

一致性(Consistency) : 客户端知道一系列的操作都会同时发生(生效)

可用性(Availability) : 每个操作都必须以可预期的响应结束

分区容错性(Partition tolerance) : 即使出现单个组件无法可用,操作依然可以完成

目前,CAP(Consistency一致性、Availability可用性、Partition-tolerance分区可容忍性)理论普遍被当作是大数据技术的理论基础。同时,根据该理论,业界有一种非常流行、非常“专业”的认识,那就是:关系型数据库设计选择了C(一致性)与A(可用性),NoSQL数据库设计则不同。其中,HBase选择了C(一致性)与P(分区可容忍性),Cassandra选择了A(可用性)与P(分区可容忍性)。


对数据库分布式事务有了解的同学一定知道数据库支持的2PC (两阶段提交),又叫做 XA Transactions。

MySQL从5.5版本开始支持,SQL Server 2005 开始支持,Oracle 7 开始支持。

其中,XA 是一个两阶段提交协议,该协议分为以下两个阶段:

    第一阶段:事务协调器要求每个涉及到事务的数据库预提交(precommit)此操作,并反映是否可以提交。

    第二阶段:事务协调器要求每个数据库提交数据。

其中,如果有任何一个数据库否决此次提交,那么所有数据库都会被要求回滚它们在此事务中的那部分信息。


BASE理论

在分布式系统中,我们往往追求的是可用性,它的重要程序比一致性要高,那么如何实现高可用性呢? 前人已经给我们提出来了另外一个理论,就是BASE理论,它是用来对CAP定理进行进一步扩充的。BASE理论指的是:

Basically Available(基本可用)

Soft state(软状态)

Eventually consistent(最终一致性)

BASE理论是对CAP中的一致性和可用性进行一个权衡的结果,理论的核心思想就是:我们无法做到强一致,但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。



分布式事务

一、两阶段提交(2PC)

两阶段提交就是使用XA协议的原理。

两阶段提交协议

两阶段提交协议是协调所有分布式原子事务参与者,并决定提交或取消(回滚)的分布式算法。

1.协议参与者

在两阶段提交协议中,系统一般包含两类机器(或节点):一类为协调者(coordinator),通常一个系统中只有一个;另一类为事务参与者(participants,cohorts或workers),一般包含多个,在数据存储系统中可以理解为数据副本的个数。协议中假设每个节点都会记录写前日志(write-ahead log)并持久性存储,即使节点发生故障日志也不会丢失。协议中同时假设节点不会发生永久性故障而且任意两个节点都可以互相通信。

分布式系统数据一致性方案_第1张图片

2.两个阶段的执行

1.请求阶段(commit-request phase,或称表决阶段,voting phase)

在请求阶段,协调者将通知事务参与者准备提交或取消事务,然后进入表决过程。

在表决过程中,参与者将告知协调者自己的决策:同意(事务参与者本地作业执行成功)或取消(本地作业执行故障)。

2.提交阶段(commit phase)

在该阶段,协调者将基于第一个阶段的投票结果进行决策:提交或取消。

当且仅当所有的参与者同意提交事务协调者才通知所有的参与者提交事务,否则协调者将通知所有的参与者取消事务。

参与者在接收到协调者发来的消息后将执行响应的操作。

(3)两阶段提交的缺点

1.同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。

当参与者占有公共资源时,其他第三方节点访问公共资源不得不处于阻塞状态。

2.单点故障。由于协调者的重要性,一旦协调者发生故障。

参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)

3.数据不一致。在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了commit请求。

而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。

(4)两阶段提交无法解决的问题

当协调者出错,同时参与者也出错时,两阶段无法保证事务执行的完整性。

考虑协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。

那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否被已经提交。




三阶段提交协议

三阶段提交协议在协调者和参与者中都引入超时机制,并且把两阶段提交协议的第一个阶段拆分成了两步:询问,然后再锁资源,最后真正提交。

分布式系统数据一致性方案_第2张图片

(1)三个阶段的执行

1.CanCommit阶段

3PC的CanCommit阶段其实和2PC的准备阶段很像。

协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。

2.PreCommit阶段

Coordinator根据Cohort的反应情况来决定是否可以继续事务的PreCommit操作。

根据响应情况,有以下两种可能。

A.假如Coordinator从所有的Cohort获得的反馈都是Yes响应,那么就会进行事务的预执行:

发送预提交请求。Coordinator向Cohort发送PreCommit请求,并进入Prepared阶段。

事务预提交。Cohort接收到PreCommit请求后,会执行事务操作,并将undo和redo信息记录到事务日志中。

响应反馈。如果Cohort成功的执行了事务操作,则返回ACK响应,同时开始等待最终指令。

B.假如有任何一个Cohort向Coordinator发送了No响应,或者等待超时之后,Coordinator都没有接到Cohort的响应,那么就中断事务:

发送中断请求。Coordinator向所有Cohort发送abort请求。

中断事务。Cohort收到来自Coordinator的abort请求之后(或超时之后,仍未收到Cohort的请求),执行事务的中断。

3.DoCommit阶段

该阶段进行真正的事务提交,也可以分为以下两种情况:

执行提交

A.发送提交请求。Coordinator接收到Cohort发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有Cohort发送doCommit请求。

B.事务提交。Cohort接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。

C.响应反馈。事务提交完之后,向Coordinator发送ACK响应。

D.完成事务。Coordinator接收到所有Cohort的ACK响应之后,完成事务。

中断事务

Coordinator没有接收到Cohort发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。

(2)三阶段提交协议和两阶段提交协议的不同

对于协调者(Coordinator)和参与者(Cohort)都设置了超时机制(在2PC中,只有协调者拥有超时机制,即如果在一定时间内没有收到cohort的消息则默认失败)。

在2PC的准备阶段和提交阶段之间,插入预提交阶段,使3PC拥有CanCommit、PreCommit、DoCommit三个阶段。

PreCommit是一个缓冲,保证了在最后提交阶段之前各参与节点的状态是一致的。

(2)三阶段提交协议的缺点

如果进入PreCommit后,Coordinator发出的是abort请求,假设只有一个Cohort收到并进行了abort操作,

而其他对于系统状态未知的Cohort会根据3PC选择继续Commit,此时系统状态发生不一致性。




一些可参看资料

http://www.importnew.com/28438.html

你可能感兴趣的:(分布式系统数据一致性方案)