前段时间复习完了高数第一章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。
若存在 N N N,当 n > N n>N n>N时, x n ≤ y n ≤ z n x_n \leq y_n \leq z_n xn≤yn≤zn ,且 lim n → ∞ x n = lim n → ∞ z n = a \lim\limits_{ {n\to \infty }}{x_n} = \lim\limits_{ {n\to \infty }}{z_n} = a n→∞limxn=n→∞limzn=a,则 lim n → ∞ y n = a \lim\limits_{ {n\to \infty }}{y_n} = a n→∞limyn=a.
单调有界函数必有极限,即单调
增(减)有上(下)界的函数必有极限。
lim x → 0 sin x x = 1 (1.1) \lim_{ {x\to 0 }}{\sin x\over{x}} = 1 \tag{1.1} x→0limxsinx=1(1.1)
lim x → 0 ( 1 + x ) 1 x = e (1.2) \lim_{ {x\to 0 }}{(1+x)^{1\over{x}}} = e \tag{1.2} x→0lim(1+x)x1=e(1.2)
lim x → ∞ ( 1 + 1 x ) x = e (1.3) \lim_{ {x\to \infty }}{(1+{1\over{x}})^x} = e \tag{1.3} x→∞lim(1+x1)x=e(1.3)
lim x → 0 a x − 1 x = ln a (1.4) \lim_{ {x\to 0 }}{ {a^x - 1}\over{x}} = \ln{a} \tag{1.4} x→0limxax−1=lna(1.4)
lim n → ∞ n n = 1 (1.5) \lim_{ {n\to \infty }}{\sqrt[{n}]{ {n}}} = 1 \tag{1.5} n→∞limnn=1(1.5)
lim n → ∞ a n = 1 , ( a > 0 ) (1.6) \lim_{ {n\to \infty }}{\sqrt[{n}]{ {a}}} = 1,(a>0) \tag{1.6} n→∞limna=1,(a>0)(1.6)
lim x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b n x n + b n − 1 x n − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m 0 , n < m ∞ , n > m (1.7) \lim_{ {x\to \infty }}{ { {a_nx^n + a_{n-1}x^{n-1}} + \cdots + a_1x + a_0 }\over{ {b_nx^n + b_{n-1}x^{n-1}} + \cdots + b_1x + b_0}} = { \left\{ \begin{aligned} &{a_n\over{b_m}}, &n=m\\ &{0}, &n
注:趋向于无穷时看高次项,趋向于0时看低次项
若 lim a ( x ) = 0 , lim β ( x ) = ∞ \lim a(x) = 0, \lim \beta(x) = \infty lima(x)=0,limβ(x)=∞,且 lim α ( x ) β ( x ) = A \lim \alpha(x)\beta(x) = A limα(x)β(x)=A,则
lim [ 1 + α ( x ) ] β ( x ) = e A \lim[1 + \alpha(x)]^{\beta(x)} = e^A lim[1+α(x)]β(x)=eA
可以归纳为以下三步:
x ∼ sin x ∼ tan x ∼ arcsin x ∼ ln ( 1 + x ) ∼ e x − 1 (1.8) x\sim \sin x \sim \tan x \sim \arcsin x \sim \ln(1+x) \sim e ^ x - 1 \tag{1.8} x∼sinx∼tanx∼arcsinx∼ln(1+x)∼ex−1(1.8)
( 1 + x ) α − 1 ∼ α x (1.9) (1 + x) ^ \alpha - 1\sim \alpha x \tag{1.9} (1+x)α−1∼αx(1.9)
a x − 1 ∼ x ln a (1.10) a^x - 1 \sim x\ln a \tag{1.10} ax−1∼xlna(1.10)
1 − cos x ∼ 1 2 x 2 (1.11) 1 - \cos x \sim {1\over{2}} x ^ 2 \tag{1.11} 1−cosx∼21x2(1.11)
x − ln ( 1 + x ) ∼ 1 2 x 2 (1.12) x - \ln(1+x) \sim {1\over{2}} x^2 \tag{1.12} x−ln(1+x)∼21x2(1.12)
tan x − x ∼ 1 3 x 3 (1.13) \tan x - x \sim {1\over{3}} x^3 \tag{1.13} tanx−x∼31x3(1.13)
x − arctan x ∼ 1 3 x 3 (1.14) x - \arctan x \sim {1\over{3}} x^3 \tag{1.14} x−arctanx∼31x3(1.14)
x − s i n x ∼ 1 6 x 3 (1.15) x - sin x \sim {1\over{6}} x^3 \tag{1.15} x−sinx∼61x3(1.15)
arcsin x − x ∼ 1 6 x 3 (1.16) \arcsin x - x \sim {1\over{6}} x^3 \tag{1.16} arcsinx−x∼61x3(1.16)
证明(1.8-1.16) 常用的等价无穷小都可以用洛必达法则证明
推论
1 − cos α x ∼ α 2 x 2 (1.17) 1 - \cos^\alpha x \sim {\alpha\over{2}}x^2 \tag{1.17} 1−cosαx∼2αx2(1.17)
1 − [ 1 + ( cos x − 1 ) ] α ∼ α ( 1 − cos x ) ∼ α 2 x 2 {1 - [1 + (\cos x - 1)]^ \alpha} \sim \alpha(1 - \cos x) \sim {\alpha\over{2}}x^2 1−[1+(cosx−1)]α∼α(1−cosx)∼2αx2
可导
连续导数
可导
,且求出 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n−1)(x)后极限仍为 0 0 \frac{0}{0} 00型
等价无穷小
或导数定义
f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o [ ( x − x 0 ) n ] , x ∈ U ( x 0 ) (1.18) f{ \left( {x} \right) }=\mathop{ \sum }\limits_{ {n=0}}^{ { \infty }}\frac{ {1}}{ {n!}}\mathop{ {f}}\nolimits^{ {(n)}}{ \left( {\mathop{ {x}}\nolimits_{ {0}}} \right) }{\mathop{ { \left( {x-\mathop{ {x}}\nolimits_{ {0}}} \right) }}\nolimits^{ {n}}} + o[(x - x_0)^n],x \in U{ \left( {\mathop{ {x}}\nolimits_{ {0}}} \right) } \tag{1.18} f(x)=n=0∑∞n!1f(n)(x0)(x−x0)n+o[(x−x0)n],x∈U(x0)(1.18)
特别是当 x 0 = 0 x_0=0 x0=0时,为麦克劳林公式
f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( 0 ) x n + o ( x n ) , x ∈ U ( 0 ) (1.19) f{ \left( {x} \right) }=\mathop{ \sum }\limits_{ {n=0}}^{ { \infty }}\frac{ {1}}{ {n!}}\mathop{ {f}}\nolimits^{ {(n)}}{ \left( {0} \right) }{\mathop{ {x}}\nolimits^{ {n}}} + o(x^n),x \in U{ \left( {0} \right) } \tag{1.19} f(x)=n=0∑∞n!1f(n)(0)xn+o(xn),x∈U(0)(1.19)
e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) (1.20) e^x = 1 + x + {x^2\over{2!}} + \cdots + {x^n\over{n!}} + o(x^n) \tag{1.20} ex=1+x+2!x2+⋯+n!xn+o(xn)(1.20)
sin ( x ) = x − x 3 3 ! + ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n ) ! + o ( x 2 n − 1 ) (1.21) \sin(x) = x - {x^3\over{3!}} + \cdots + (-1)^{n-1}{ {x^{2n-1}}\over{(2n)!}} + o(x^{2n-1}) \tag{1.21} sin(x)=x−3!x3+⋯+(−1)n−1(2n)!x2n−1+o(x2n−1)(1.21)
cos ( x ) = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) (1.22) \cos(x) = 1 - {x^2\over{2!}} + \cdots + (-1)^{n}{ {x^{2n}}\over{(2n)!}} + o(x^{2n}) \tag{1.22} cos(x)=1−2!x2+⋯+(−1)n(2n)!x2n+o(x2n)(1.22)
ln ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) (1.23) \ln(1 + x) = x - {x^2\over{2}} + \cdots + (-1)^{n-1}{ {x^{n}\over{n}}} + o(x^{n}) \tag{1.23} ln(1+x)=x−2x2+⋯+(−1)n−1nxn+o(xn)(1.23)
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + [ α ! / ( α − n ) ! ] n ! x n + o ( x n ) (1.24) (1 + x) ^ \alpha = 1 + \alpha x + {\alpha (\alpha - 1)\over{2!} }x^2 + \cdots + {[\alpha!/(\alpha - n)!]\over{n!}}x^n + o(x^n) \tag{1.24} (1+x)α=1+αx+2!α(α−1)x2+⋯+n![α!/(α−n)!]xn+o(xn)(1.24)
lim n → ∞ a 1 n + a 2 n + ⋯ + a m n n = m a x { a i } (1.25) \lim\limits_{ {n\to \infty }}{\sqrt[{n}]{ {a_1^n + a_2^n + \cdots + a_m^n}}} = max\{a_i\} \tag{1.25} n→∞limna1n+a2n+⋯+amn=max{ ai}(1.25)
其中 a i > 0 , ( i = 1 , 2 , ⋯ , m ) a_i > 0, (i = 1, 2, \cdots, m) ai>0,(i=1,2,⋯,m)
令 m a x { a i } = a max\{a_i\} = a max{ ai}=a,则
a n n < a 1 n + a 2 n + ⋯ + a m n n < m a n n \sqrt[n]{a^n} < {\sqrt[{n}]{ {a_1^n + a_2^n + \cdots + a_m^n}}} < \sqrt[n]{ma^n} nan<na1n+a2n+⋯+amn<nman
lim n → ∞ a n n = a \lim\limits_{ {n\to \infty }}{\sqrt[{n}]{ {a^n}}} = a n→∞limnan=a
lim n → ∞ m a n n = a \lim\limits_{ {n\to \infty }}{\sqrt[{n}]{ {ma^n}}} = a n→∞limnman=a
根据夹逼准则
lim n → ∞ a 1 n + a 2 n + ⋯ + a m n n = m a x { a i } (1.26) \lim\limits_{ {n\to \infty }}{\sqrt[{n}]{ {a_1^n + a_2^n + \cdots + a_m^n}}} = max\{a_i\} \tag{1.26} n→∞limna1n+a2n+⋯+amn=max{ ai}(1.26)
2 1 a + 1 b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 {2\over{ {1\over{a}} + {1\over{b}}}} \leq \sqrt{ab} \leq \frac{a + b}{2} \leq \sqrt{\frac{a ^ 2 + b ^ 2}{2}} a1+b12≤ab≤2a+b≤2a2+b2
设 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某领域内有定义,若 lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0}{f(x) = f(x_0)} x→x0limf(x)=f(x0)则称 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续。
若 lim x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0^-}{f(x)} = f(x_0) x→x0−limf(x)=f(x0) ,则称$ y = f(x) 在 点 在点 在点x_0$处左连续。
若 lim x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x \to x_0^+}{f(x)} = f(x_0) x→x0+limf(x)=f(x0) ,则称$ y = f(x) 在 点 在点 在点x_0$处右连续。
函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续的充要条件是 f ( x ) f(x) f(x)在点 x 0 x_0 x0既左连续又右连续。
第一类间断点
存在
且相等
的间断点成为可去间断点存在
但不相等
的间断点成为跳跃间断点第二类间断点
无穷间断点
震荡间断点
其他
注:在答题时,一般来说,第一类间断点需要说明是可去间断点还是跳跃间断点,如无特殊要求,第二类间断点只需要声明为第二类间断点。
求极限
无穷小阶的比较
间断点类型