数据结构 [Java版本] 树之应用 二叉排序树 (BST)

先看一个需求

给一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加。

解决方案分析

使用数组
数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢. [示意图]
数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位置后,后面的数据需整体移动,速度慢。

使用链式存储-链表不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。

使用二叉排序树 二叉排序树介绍
二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:


数据结构 [Java版本] 树之应用 二叉排序树 (BST)_第1张图片
二叉排序树

数据结构 [Java版本] 树之应用 二叉排序树 (BST)_第2张图片
二叉排序树
二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创建成对应的二叉排序树为 :

数据结构 [Java版本] 树之应用 二叉排序树 (BST)_第3张图片
二叉排序树

二叉树的创建和遍历代码实现

package cn.icanci.datastructure.binarysorttree;

/**
 * @Author: icanci
 * @ProjectName: AlgorithmAndDataStructure
 * @PackageName: cn.icanci.datastructure.binarysorttree
 * @Date: Created in 2020/3/16 13:26
 * @ClassAction: 二叉排序树
 */
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        binarySortTree.infixOrder();
    }
}

class BinarySortTree {
    private Node root;

    public void add(Node node) {
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }

    //中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("空");
        }
    }
}

class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    /**
     * 添加节点的方法
     * 递归的形式添加节点 注意需要满足二叉排序树的要求
     *
     * @param node 需要添加的节点
     */
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //判断传入的节点的值
        if (node.value < this.value) {
            if (this.left == null) {
                this.left = node;
            } else {
                this.left.add(node);
            }
        } else {
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

测试

Node{value=1}
Node{value=3}
Node{value=5}
Node{value=7}
Node{value=9}
Node{value=10}
Node{value=12}
二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

删除叶子节点 (比如:2, 5, 9, 12)
删除只有一颗子树的节点 (比如:1)
删除有两颗子树的节点. (比如:7, 3,10 )

第一种情况:
删除叶子节点 (比如:2, 5, 9, 12)
思路
(1) 需求先去找到要删除的结点  targetNode
(2)  找到targetNode 的 父结点 parent 
(3)  确定 targetNode 是 parent的左子结点 还是右子结点
(4)  根据前面的情况来对应删除
左子结点 parent.left = null
右子结点 parent.right = null;
第二种情况: 删除只有一颗子树的节点 比如 1
思路
(1) 需求先去找到要删除的结点  targetNode
(2)  找到targetNode 的 父结点 parent 
(3) 确定targetNode 的子结点是左子结点还是右子结点
(4) targetNode 是 parent 的左子结点还是右子结点
(5) 如果targetNode 有左子结点
5. 1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.left;
5.2  如果 targetNode 是 parent 的右子结点
parent.right = targetNode.left;
(6) 如果targetNode 有右子结点
6.1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.right;
6.2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right


情况三 : 删除有两颗子树的节点. (比如:7, 3,10 )
思路
(1) 需求先去找到要删除的结点  targetNode
(2)  找到targetNode 的 父结点 parent 
(3)  从targetNode 的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存 temp = 11
(5)  删除该最小结点
(6)  targetNode.value = temp
代码实现
package cn.icanci.datastructure.binarysorttree;


/**
 * @Author: icanci
 * @ProjectName: AlgorithmAndDataStructure
 * @PackageName: cn.icanci.datastructure.binarysorttree
 * @Date: Created in 2020/3/16 13:26
 * @ClassAction: 二叉排序树
 */
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12

        //测试一下删除叶子结点
        binarySortTree.delNode(12);
        binarySortTree.delNode(5);
        binarySortTree.delNode(10);
        binarySortTree.delNode(2);
        binarySortTree.delNode(3);
        binarySortTree.delNode(9);
        binarySortTree.delNode(1);
        binarySortTree.delNode(7);
        System.out.println("root=" + binarySortTree.getRoot());
        System.out.println("删除结点后");
        binarySortTree.infixOrder();
    }

}

//创建二叉排序树
class BinarySortTree {
    private Node root;


    public Node getRoot() {
        return root;
    }

    //查找要删除的结点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }

    //查找父结点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    //编写方法:
    //1. 返回的 以node 为根结点的二叉排序树的最小结点的值
    //2. 删除node 为根结点的二叉排序树的最小结点

    /**
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左子节点,就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //这时 target就指向了最小结点
        //删除最小结点
        delNode(target.value);
        return target.value;
    }


    //删除结点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //1.需求先去找到要删除的结点  targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if (targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉排序树只有一个结点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }

            //去找到targetNode的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if (targetNode.left == null && targetNode.right == null) {
                //判断targetNode 是父结点的左子结点,还是右子结点
                if (parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;


            } else { // 删除只有一颗子树的结点
                //如果要删除的结点有左子结点
                if (targetNode.left != null) {
                    if (parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { //  targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else { //如果要删除的结点有右子结点
                    if (parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { //如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }

            }

        }
    }

    //添加结点的方法
    public void add(Node node) {
        if (root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }

    //中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {

        this.value = value;
    }


    //查找要删除的结点

    /**
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点,否则返回null
     */
    public Node search(int value) {
        if (value == this.value) { //找到就是该结点
            return this;
        } else if (value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
            //如果左子结点为空
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else { //如果查找的值不小于当前结点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }

    }
    //查找要删除结点的父结点

    /**
     * @param value 要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if ((this.left != null && this.left.value == value) ||
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value); //向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); //向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }

    }

    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }


    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if (node == null) {
            return;
        }

        //判断传入的结点的值,和当前子树的根结点的值关系
        if (node.value < this.value) {
            //如果当前结点左子结点为null
            if (this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else { //添加的结点的值大于 当前结点的值
            if (this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }

        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

测试
中序遍历二叉排序树~
Node [value=1]
Node [value=2]
Node [value=3]
Node [value=5]
Node [value=7]
Node [value=9]
Node [value=10]
Node [value=12]
root=null
删除结点后
二叉排序树为空,不能遍历

你可能感兴趣的:(数据结构 [Java版本] 树之应用 二叉排序树 (BST))