- MySQL的窗口函数介绍
找不到、了
mysqljavamysql数据库
目录1、窗口函数的概念1.1、介绍1.2、基本语法结构2、窗口函数分类2.1、排名函数1、rank()2、dense_rank()3、row_number()2.2、分析函数1、lead()和lag()2、first_value()和last_value()3、nth_value()2.3、聚合函数作为窗口函数3、窗口定义详解3.1、partitionby子句3.2、orderby子句3.3、窗口
- 基于昇腾910B部署Qwen3-embedding-8B模型(通过vllm 推理引擎部署)
萌新--加油
embedding人工智能经验分享
目前基于知识库搭建,会涉及到embedding和rerank模型,目前阿里通义千问Qwen3-embedding-8B模型在网上测评效果还不错,本文基于vllm部署Qwen3-embedding-8B模型,使用的国产化算力910B2-64G单卡资源。1、环境要求:软件支持版本CANN>=8.1.RC1torch-npu>=2.5.1torch>=2.5.1Python>=3.9,<3.122、to
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- LoRA 实战指南:NLP 与 CV 场景的高效微调方法全解析
fairymt
产品经理的AI秘籍自然语言处理人工智能机器学习
大模型已成AI应用的“标配”,但高昂的训练和部署成本让很多企业望而却步。LoRA(Low-RankAdaptation)作为一种轻量级微调方案,正成为NLP与CV场景中低成本定制的利器。本文详细通过详细介绍LoRA的核心原理、在文本与图像任务中的应用场景、主流工具框架与实践方式,帮助你快速掌握这项高性价比技术。国产生态实战:基于LLaMA-Factory+DeepSeek+LoRA+FastAPI
- 概述-1-数据库的相关概念
He.ZaoCha
MySQL数据库mysql
数据库的相关概念用户通过SQL操作数据库管理系统,再通过数据库管理系统操作数据库以及数据库中的数据。数据库数据库是存储数据的仓库,数据是有组织的进行存储,DataBase简称(DB)数据库管理系统操纵和管理数据库的大型软件,DataBaseManagementSystem简称(DBMS)主流的关系型数据库管理系统DB-EnginesRanking根据数据库管理系统的受欢迎程度对其进行排名。排名每月
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- 【大模型学习 | LORA 原理及实现】
九年义务漏网鲨鱼
语言模型pythonpytorch自然语言处理
LORA:LOW-RANKADAPTATIONOFLARGELAN-GUAGEMODELSGithub库:GitHub-microsoft/LoRA:Codeforloralib,animplementationof“LoRA:Low-RankAdaptationofLargeLanguageModels”GPT-3:175B微调模型变得十分的贵。作者提出利用Low-RankAdaption来冻结
- manjaro安装微软雅黑字体_开始使用 Manjaro(添加源+字体渲染去模糊+软件安装+优化配置+常见错误)(30)...
真的是单大宝
manjaro安装微软雅黑字体
1.添加archlinux镜像源1.步骤一向/etc/pacman.d/mirrorlist中添加国内镜像地址1.1方法1:自动添加1、输入如下命令查看国内镜像源,并按质量排序:sudopacman-mirrors-i-cChina-mrank,之后会弹出一个窗口,可以选择想要的镜像源,选择确定后会自动导入/etc/pacman.d/mirrorlist配置文件中。1.2方法2:手动添加直接在et
- LLMs之Embedding:Qwen3 Embedding的简介、安装和使用方法、案例应用之详细攻略
一个处女座的程序猿
NLP/LLMsembeddingLLM
LLMs之Embedding:Qwen3Embedding的简介、安装和使用方法、案例应用之详细攻略目录Qwen3Embedding的简介1、特点2、模型列表3、评测结果MTEB(Multilingual)MTEB(Engv2)C-MTEB(MTEBChinese)RerankerQwen3Embedding的使用方法1、安装2、使用方法2.1、TextEmbedding嵌入模型的使用方法Tran
- java工程师面试题大全-100%公司笔试题你都能碰到几个
javaPie
Javaid="cproIframe_u788097_1"width="336"height="280"src="http://pos.baidu.com/acom?adn=3&at=166&aurl=&cad=1&ccd=24&cec=UTF-8&cfv=16&ch=0&col=zh-CN&conOP=0&cpa=1&dai=1&dis=0&layout_filter=rank%2Ctabclo
- Hadoop 发展过程是怎样的?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2003年,美国加州大学洛杉矶分校教授李彦宏博士发明了一种分布式文件系统——GFS(GoogleFileSystem)。由于该文件系统设计得足够简单,可以适应大规模数据集存储需求,在此基础上演化出多种应用,包括MapReduce、BigTable、PageRank等,并成为当时互联网公司的标配技术之一。2004年,Google发布了第一版Hadoop项目,定位是
- 【iSAQB软件架构】架构模式
小马哥编程
架构java开发语言代理模式微服务系统架构
模式在软件的设计和开发中是一个重要的工具。在软件开发的许多领域都存在模式——例如,设计模式、架构模式、分析模式、软件组织模式和教学模式。架构模式的分类是按照弗兰克·布施曼(FrankBuschmann)的四类系统进行的。其基本概念是以模式所解决的问题作为分类的基础。适应性系统此类别中的模式支持应用程序的扩展以及它们对不断发展的技术和不断变化的功能需求的适应。依赖注入在面向对象设计中,由于需要创建一
- 人工智能: 矩阵的秩从数学基础到综合实战!!
AI Agent首席体验官
人工智能矩阵算法
1.矩阵的秩矩阵的秩(Rank)是描述矩阵线性独立的行或列的最大数目。对于一个矩阵AAA,其秩记作rank(A)rank(A)rank(A)或r(A)r(A)r(A)。基本性质对于m×nm\timesnm×n矩阵AAA,秩满足:0≤rank(A)≤min(m,n)0\leqrank(A)\leqmin(m,n)0≤rank(A)≤min(m,n)行秩等于列秩:矩阵的线性独立的行数等于线性独立的列数
- 如何高效训练通义万相2.1的LoRA:从原理到实战指南
Liudef06小白
AI作画图生视频lora通义万相WAN2.1
在AI图像生成领域,通义万相2.1作为领先的扩散模型,其官方API虽功能强大,但定制能力有限。LoRA(Low-RankAdaptation)技术正是解决这一痛点的关键钥匙——它允许开发者以极低成本实现模型个性化定制。本文将详细解析训练通义万相2.1LoRA的全流程,助你掌握定制专属AI艺术家的核心技能。一、认识通义万相2.1与LoRA1.1通义万相2.1核心特性多模态理解:精准解析复杂文本提示(
- 【libyuv】windows cmake 构建 for webrtc
等风来不如迎风去
WebRTC入门与实战windowsgitbashlibyuv
使用vs直接构建webrtc的部分源码,发现libyuv是webrtc源码的依赖库,会有链接错误官方说明https://github.com/frankpapenmeier/libyuv/blob/master/docs/getting_started.md看起来官方灭有推荐windows用cmake构建实测,用cmake也是可以的。deptoolsYou’llneedtohavedepottoo
- GitHub 趋势日报 (2025年06月18日)
qianmoQ
GitHub项目趋势日报(2025年)github
由TrendForge系统生成|https://trendforge.devlive.org/本日报中的项目描述已自动翻译为中文今日获星趋势图今日获星趋势图1759jan991fluentui-system-icons549ragflow522anthropic-cookbook452automatisch265data-engineer-handbook194frankenphp171DeepE
- RAG 处理流程
成都犀牛
网络自然语言处理神经网络深度学习RAG
下面是处理流程图UserSystemEmbeddingModelRetrieverRerankerLLMKnowledgeBase输入问题(Query)用嵌入模型编码QueryQuery向量用Query向量检索查找相似向量(原始使用嵌入模型编码)返回TopK文档块原始检索结果对结果重排序(可选)精排后文档组合:Query+相关文档生成最终回答返回答案UserSystemEmbeddingModel
- 一文读懂CompassRank榜单的评测指标【多模态学习实战手册】
大F的智能小课
大模型理论和实战人工智能
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!1.前言榜单链接:CompassRankCompassRank是一个中立且全面的性能榜单,作为大模型评测体系OpenCompass2.0中各类榜单的承载平台。它覆盖多领域、多任务下的模型性能,并定期更新,以提供动态的行业洞察。
- 针对HR的陷阱,攻击者利用虚假简历传播恶意软件
新型攻击手法曝光以经济利益为驱动的威胁组织FIN6(又称CamouflageTempest、GoldFranklin等)近期被发现利用亚马逊云服务(AWS)基础设施托管虚假简历,传播名为More_eggs的恶意软件家族。DomainTools调查团队(DTI)向《黑客新闻》提供的报告显示:"该组织通过伪装求职者在LinkedIn等平台与招聘人员建立联系后,发送包含恶意软件的钓鱼信息。"恶意软件技术
- 什么是 QLoRA(Quantized Low-Rank Adaptation,量化低秩适配)
彬彬侠
大模型QLoRA量化低秩适配PEFT参数高效微调transformersbitsandbytespython
QLoRA(QuantizedLow-RankAdaptation,量化低秩适配)是LoRA(Low-RankAdaptation)的一种优化扩展,旨在进一步降低大语言模型微调的计算和内存需求。QLoRA结合了4-bit量化(quantization)和LoRA的低秩更新技术,使超大规模模型(如70B参数的LLaMA)能够在单GPU上进行高效微调,同时保持与全参数微调相近的性能。QLoRA由Det
- LoRA、QLoRA是什么
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
人工智能机器学习深度学习
一:LoRA(Low-RankAdaptation,低秩适应)是一种高效的大模型参数微调技术,由Meta在2021年提出。它通过冻结预训练模型参数,仅训练少量新增的低秩矩阵,大幅减少了需要训练的参数量,同时保持接近全参数微调的效果。为什么需要LoRA?传统的全参数微调(Fine-tuning)需要更新大型语言模型的所有参数(如GPT-3有1750亿参数),这带来两个核心问题:计算资源需求极高:需要
- Qwen3-Embedding-Reranker本地部署教程:8B 参数登顶 MTEB 多语言榜首,100 + 语言跨模态检索无压力!
算家计算
模型构建embeddingQwen3Qwen3-Reranker模型部署教程智能检索算家云镜像社区
一、简介Qwen3-Embedding与Qwen3-Reranker是阿里巴巴通义实验室于今年6月开源的双模型系列,专为文本表征、检索与排序任务设计。基于Qwen3基础模型构建,二者通过协同工作显著提升语义理解与信息检索效率,在多语言场景和工业部署中表现卓越。基于Qwen3系列的密集基础模型,提供了各种大小(0.6B、4B和8B)的全面文本嵌入和重新排序模型。该系列继承了其基础模型出色的多语言能力
- 如何使用EnsembleRetriever结合多个检索器的结果
weixin_43212959
windows人工智能microsoft
在信息检索领域,融合不同检索器的结果可以提升搜索结果的质量。EnsembleRetriever是一个支持将多个检索器的结果组合起来的工具。它通过复合互排名融合算法(ReciprocalRankFusion)重新排序各个检索器的结果,以实现更好的性能。技术背景介绍在搜索和信息检索中,"混合搜索"模式成为一种常见的做法。混合搜索通常结合稀疏检索器(如BM25)和密集检索器(如基于嵌入的相似性)。稀疏检
- RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了
代码讲故事
学术相关自动驾驶人工智能机器学习RAGCVPRQanythingFastGPT
RAG工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了。本文详细比较了四种RAG工业落地方案——Qanything、RAGFlow、FastGPT和智谱RAG,重点分析了它们在知识处理、召回模块、重排模块、大模型处理、Web服务和切词处理等方面的具体实现。Qanything在rerank模块设计上
- 矩阵的秩 - 全面解析
二分掌柜的
数学物理矩阵机器学习线性代数
矩阵的秩:全面解析flyfish秩的概念揭示了“独立”与“依赖”的数量关系。秩的定义与直观理解1.秩的核心定义定义1(线性无关组视角):矩阵的秩是其列向量组中极大线性无关组的向量个数,记为r(A)r(A)r(A)或rank(A)\text{rank}(A)rank(A)。例:矩阵A=(1224)A=\begin{pmatrix}1&2\\2&4\end{pmatrix}A=(1224),列向量为a
- 窗口函数总结篇
fieldsss
Mysql刷题算法
一、基本语法及常见函数SELECTcolumn1,column2,窗口函数()OVER(PARTITIONBY分组列ORDERBY排序列[ASC|DESC]ROWS/RANGEBETWEEN起始位置AND结束位置)AS别名FROMtable_name;分类函数作用典型场景排名函数ROW_NUMBER()为每行分配唯一序号(无并列)生成唯一行号RANK()允许并列排名,跳过重复序号(如1,1,3)带
- 大数据学习(138)-Hive数据分析3
viperrrrrrr
大数据学习hive
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、分组排序问题(TopN变体)1.按多个条件排序并取TopN问题:查询每个部门薪资最高且入职最早的前2名员工。思路:窗口函数中用ORDERBYsalaryDESC,hire_dateASC实现多条件排序。用ROW_NUMBER()生成唯一排名,避免并列。代码模板:WITHrank
- 山东大学2020-2021春季web数据管理期末考试
Joheey
山东大学web数据管理
一、填空题(30空,只记得这些了)DFS比BFS好处在于爬虫礼貌性BM25三个参数词项处理——文档解析、词条化、词项归一化、次干还原、词型归并三种分词算法统计语言模型的定义LBP定义tamura的特征颜色矩二、简答题1、RE2、web数据抽取3、TF/IDF4、倒排索引的定义5、忘记了三、论述题1、网站和爬虫的博弈2、基于HMM的分词算法3、网页排序算法PageRank、HITS、HillTop4
- md文件转换word文档
下载pandoc软件https://pandoc.org/installing.html下载pandoc安装包之后,像安装普通软件一样点开安装就可以了。安装完成之后,打开cmd命令行,输入pandoc-v,如果正常显示出类似下面的信息就表明安装成功,如果未成功,可能需要配置环境变量,把安装的路径C:\Users\Frank\AppData\Local\Pandoc\加入环境变量配置bat批处理文件
- 为什么RAG系统必须引入Rerank?深入解析两阶段检索的价值与挑战
一休哥助手
人工智能RAG
在当今大模型应用中,检索增强生成(RAG)已成为解决知识更新和幻觉问题的关键技术,但超过70%的RAG系统在首次部署后都面临答案不精准的困扰——而引入Rerank重排序机制,正是解开这一困局的关键密钥。一、RAG的精度困境:当“近似”检索遇到生成需求在经典RAG流程中,系统通过以下步骤运作:用户查询被Embedding模型转换为向量在向量数据库中进行相似度搜索(ANN)返回Top-K相关文档提示工
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,