题目链接:http://poj.org/problem?id=3420
非常经典的题目,推荐看<十个利用矩阵乘法解决的经典题目>。先求出相邻两列的状态转移矩阵,然后用矩阵乘法优化,相当于求在一个图上求两点之间有多少条路径数。
1 //STATUS:C++_AC_0MS_172KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //using namespace __gnu_cxx; 25 //define 26 #define pii pair<int,int> 27 #define mem(a,b) memset(a,b,sizeof(a)) 28 #define lson l,mid,rt<<1 29 #define rson mid+1,r,rt<<1|1 30 #define PI acos(-1.0) 31 //typedef 32 typedef __int64 LL; 33 typedef unsigned __int64 ULL; 34 //const 35 const int N=20; 36 const int INF=0x3f3f3f3f; 37 //const int MOD=100000,STA=8000010; 38 const LL LNF=1LL<<60; 39 const double EPS=1e-8; 40 const double OO=1e15; 41 const int dx[4]={-1,0,1,0}; 42 const int dy[4]={0,1,0,-1}; 43 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 44 //Daily Use ... 45 inline int sign(double x){return (x>EPS)-(x<-EPS);} 46 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 47 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 48 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 49 template<class T> inline T Min(T a,T b){return a<b?a:b;} 50 template<class T> inline T Max(T a,T b){return a>b?a:b;} 51 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 52 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 53 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 54 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 55 //End 56 57 const int size=6; 58 LL ma[size][size]={ 59 {1,1,0,1,1,1}, 60 {1,0,0,0,1,0}, 61 {0,0,0,1,0,0}, 62 {1,0,1,0,0,0}, 63 {1,1,0,0,0,0}, 64 {1,0,0,0,0,0} 65 }; 66 LL n,MOD; 67 68 struct Matrix{ 69 LL ma[size][size]; 70 Matrix friend operator * (const Matrix a,const Matrix b){ 71 Matrix ret; 72 mem(ret.ma,0); 73 int i,j,k; 74 for(k=0;k<size;k++) 75 for(i=0;i<size;i++) 76 for(j=0;j<size;j++) 77 ret.ma[i][j]=(ret.ma[i][j]+a.ma[i][k]*b.ma[k][j])%MOD; 78 return ret; 79 } 80 }ans,mta; 81 82 void mutilpow(LL k) 83 { 84 int i,j; 85 mem(ans.ma,0); 86 for(i=0;i<size;i++) 87 ans.ma[i][i]=1; 88 for(;k;k>>=1){ 89 if(k&1)ans=ans*mta; 90 mta=mta*mta; 91 } 92 } 93 94 int main() 95 { 96 // freopen("in.txt","r",stdin); 97 int i,j; 98 while(~scanf("%I64d%I64d",&n,&MOD) && (n||MOD)) 99 { 100 for(i=0;i<size;i++){ 101 for(j=0;j<size;j++) 102 mta.ma[i][j]=ma[i][j]; 103 } 104 105 mutilpow(n); 106 107 printf("%I64d\n",ans.ma[0][0]); 108 } 109 return 0; 110 }