转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码)
最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm for Computing Longest Common Subsequence"中,给出了O(nlogn)下限的一种算法。
定理:设序列A长度为n,{A(i)},序列B长度为m,{B(i)},考虑A中所有元素在B中的序号,即A某元素在B的序号为{Pk1,Pk2,..},将这些序号按照降序排列,然后按照A中的顺序得到一个新序列,此新序列的最长严格递增子序列即对应为A、B的最长公共子序列。
举例来说,A={a,b,c,d,b},B={b,c,a,b},则a对应在B的序号为2,b对应序号为{3,0},c对应序号为1,d对应为空集,生成的新序列为{2, 3, 0, 1, 3, 0},其最长严格递增子序列为{0,1,3},对应的公共子序列为{b, c, b}
原论文的证明过程较复杂,其实可以简单的通过一一对应来证明。即证明A、B的一个公共子序列和新序列的一个严格递增子序列一一对应。
(1) A、B的一个公共子序列对应新序列的一个严格递增子序列
假设A、B的某一个公共子序列长度为k,则其公共子序列在A和B中可以写为
{Ai1,Ai2, ..., Aik}
{Bj1,Bj2, ..., Bjk}
如此有Ai1 = Aj1,Ai2 = Aj2, ...., Aik = Ajk, 考虑元素Bj1在B中的序号P(Bj1),则有
P(Bj1)< P(Bj2) < ... < P(Bjk)
注意此严格递增子序列属于新序列的一个子序列,因此得证
(2) 新序列的一个严格递增子序列对应A、B的一个公共子序列
设新序列的一个严格递增子序列{P1,P2, ..., Pk},任意两个相同的P不可能属于A中同一个元素,因为A中某元素在B中的序号按照降序排列,但此序列为严格递增序列,矛盾。所以每个P均对应于A中不同位置的元素,设为{Ai1, Ai2, ..., Aik}。
因为P是严格递增序列,则每个P也对应B中唯一的一个元素,假设为{Bj1,Bj2, ..., Bjk},由P的定义可知Ai1= Bj1, Ai2 = Bj2, ...., Aik = Bjk,因此得证。
实现上比较复杂,有以下几个步骤:
(1) 对序列B排序
(2) 计算A中每个元素在B中的序号,并构成新序列
(3) 使用LIS的方法计算最长严格递增子序列
(4) 获取最长公共子序列
性能分析:
(1) 排序复杂度为nlogn
(2) 获取一个元素在B中的序号的复杂度,最小为logn,最大为n,获取所有元素的复杂度为 nlogn === n*n
(3) LIS 复杂度为nlogn
因此总体复杂度在nlogn 到 n*n logn之间,但如果(2) 步骤中A中元素在B中的序号对数很少时,性能相当优越,在实际测试时,string 中均为小写字母,长度为10000的情况下,这种方法比普通的LCS快一倍以上;如果string 中的字符扩展成char,即0-255,则这种方法比普通的LCS快至少一个数量级。
以下是参考代码:
#include<cstdio> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> #include<set> #include<map> #include<stack> #include<vector> #include<queue> #include<string> #include<sstream> #define eps 1e-9 #define ALL(x) x.begin(),x.end() #define INS(x) inserter(x,x.begin()) #define FOR(i,j,k) for(int i=j;i<=k;i++) #define MAXN 1005 #define MAXM 40005 #define INF 0x3fffffff using namespace std; typedef long long LL; struct node { char c; int num; } u[10005]; int i,j,k,n,m,x,y,T,ans,big,cas,num,len; bool flag; bool cmp(node a,node b) { if (a.c==b.c) return a.num>b.num; return a.c<b.c; } vector <int> p; char a[10005],b[10005],c[10005]; int lena,lenb,dp[10005]; int main() { scanf("%s",a);//读入a串 scanf("%s",b);//读入b串 lena=strlen(a); lenb=strlen(b); for (i=0;i<lenb;i++) { u[i].c=b[i]; u[i].num=i; } sort(u,u+lenb,cmp);//对b串排序 for (i=0;i<lenb;i++)//排序后存入字符串c中,便于使用lower_bound { c[i]=u[i].c; } c[lenb]='\0'; for (i=0;i<lena;i++)//计算A中每个元素在B中的序号 { k=lower_bound(c,c+lenb,a[i])-c; while (k<lenb && a[i]==c[k]) { p.push_back(u[k].num); k++; } } n=p.size(); memset(dp,0,sizeof(dp));//计算最长上升子序列 num=0; for (i=0;i<n;i++) { if (p[i]>dp[num]) { dp[++num]=p[i]; }else { k=lower_bound(dp+1,dp+1+num,p[i])-dp; dp[k]=p[i]; } } printf("%d\n",num); return 0; }