前言
今日给大家带来的是图像识别技术——小狗分类器
工具使用
开发环境:win10、python3.6
开发工具:pycharm
工具包 :keras,numpy, PIL
效果展示
训练集的准确率为0.925,但测试集只有0.7
说明过拟合了,可以再增加一些图片,或者使用数据增强,来减少过拟合。
测试了两张图片,全都识别对了!
思路分析
- 1 准备数据集
- 2 数据集的预处理
- 3 搭建卷积神经网络
- 4 训练
- 5 预测
1、准备数据集
我们可以通过爬虫技术,把4类图像(京巴、拉布拉多、柯基、泰迪)保存到本地。总共有840张图片做训练集,188张图片做测试集。
2 数据集的预处理
1 统一尺寸为1001003(RGB彩色图像)
# 统一尺寸的核心代码
img = Image.open(img_path)
new_img = img.resize((100, 100), Image.BILINEAR)
new_img.save(os.path.join('./dog_kinds_after/' + dog_name, jpgfile))
2 由于数据是自己下载的,需要制作标签(label),可提取图像名称的第一个数字作为类别。(重命名图片)
kind = 0
# 遍历京巴的文件夹
images = os.listdir(images_path)
for name in images:
image_path = images_path + '/'
os.rename(image_path + name, image_path + str(kind) +'_' + name.split('.')[0]+'.jpg')
3 划分数据集
840张图片做训练集,188张图片做测试集。
4 把图片转换为网络需要的类型
# 只放了训练集的代码,测试集一样操作。
ima_train = os.listdir('./train')
# 图片其实就是一个矩阵(每一个像素都是0-255之间的数)(100*100*3)
# 1.把图片转换为矩阵
def read_train_image(filename):
img = Image.open('./train/' + filename).convert('RGB')
return np.array(img)
x_train = []
# 2.把所有的图片矩阵放在一个列表里 (840, 100, 100, 3)
for i in ima_train:
x_train.append(read_train_image(i))
x_train = np.array(x_train)
# 3.提取kind类别作为标签
y_train = []
for filename in ima_train:
y_train.append(int(filename.split('_')[0]))
# 标签(0/1/2/3)(840,)
y_train = np.array(y_train)
# 我是因为重命名图片为(1/2/3/4),所以都减了1
# 为了能够转化为独热矩阵
y_train = y_train - 1
# 4.把标签转换为独热矩阵
# 将类别信息转换为独热码的形式(独热码有利于神经网络的训练)
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
print(y_test)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape) # (840, 100, 100, 3)
print(y_train.shape) # (840,)
3 搭建卷积神经网络
Keras是基于TensorFlow的深度学习库,是由纯Python编写而成的高层神经网络API,也仅支持Python开发。
它是为了支持快速实践而对Tensorflow的再次封装,让我们可以不用关注过多的底层细节,能够把想法快速转换为结果。
# 1.搭建模型(类似于VGG,直接拿来用就行)
model = Sequential()
# 这里搭建的卷积层共有32个卷积核,卷积核大小为3*3,采用relu的激活方式。
# input_shape,字面意思就是输入数据的维度。
#这里使用序贯模型,比较容易理解
#序贯模型就像搭积木一样,将神经网络一层一层往上搭上去
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#dropout层可以防止过拟合,每次有25%的数据将被抛弃
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4, activation='softmax'))
4 训练
训练的过程,就是最优解的过程。
对上图来说,就是根据数据集,不断的迭代,找到一条最近似的直线(y = kx + b),把参数k,b保存下来,预测的时候直接加载。
# 编译模型
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
# 一共进行32轮
# 也就是说840张图片,每次训练10张,相当于一共训练84次
model.fit(x_train, y_train, batch_size=10, epochs=32)
# 保存权重文件(也就是相当于“房价问题的k和b两个参数”)
model.save_weights('./dog_weights.h5', overwrite=True)
# 评估模型
score = model.evaluate(x_test, y_test, batch_size=10)
print(score)
5 预测
此时k、b(参数)和x(小狗的图像)都是已知的了,求k(类别)就完了。
# 1.上传图片
name = input('上传图片的名称(例如:XX.jpg)为:')
# 2.预处理图片(代码省略)
# 3.加载权重文件
model.load_weights('dog_weights.h5')
# 4.预测类别
classes = model.predict_classes(x_test)[0]
target = ['京巴', '拉布拉多', '柯基', '泰迪']
# 3-泰迪 2-柯基 1-拉布拉多 0-京巴
# 5.打印结果
print("识别结果为:" + target[classes])
文章到这里就结束了,感谢你的观看,Python数据分析系列,下个系列分享Python小技巧
为了感谢读者们,我想把我最近收藏的一些编程干货分享给大家,回馈每一个读者,希望能帮到你们。
干货主要有:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
⑥ 两天的Python爬虫训练营直播权限
All done~详见个人简介或者私信获取完整源代码。。