【联邦元学习】论文解读:Federated Meta-Learning for Fraudulent Credit Card Detection

论文:Zheng W, Yan L, Gou C, et al. Federated Meta-Learning for Fraudulent Credit Card Detection[C], Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence Special Track on AI in FinTech. Pages 4654-4660. 2020: 4654-4660.

【原创,转载需标明出处】论文解析(内含论文原文):https://ripe-heliotrope-6f4.notion.site/Federated-Meta-Learning-for-Fraudulent-Credit-Card-Detection-81403861597a40678994d5e1e6f1f7fb

2020年发表在IJCAI的这篇联邦元学习的论文,主要在元学习过程中加入度量学习来对Query Set进行二分类,提出了一种新的联邦元学习框架—deep K-tuplet network,推广了triplet网络允许与k个负样本进行联合比较。通过Feature Extraction Model进行度量学习出特征,通过Relation Model进行相似度匹配。

【联邦元学习】论文解读:Federated Meta-Learning for Fraudulent Credit Card Detection_第1张图片

 

你可能感兴趣的:(联邦学习,元学习,度量学习,深度学习,机器学习,pytorch)