ICCV 2021 结果出炉!最全论文下载及分类汇总(更新中)

在本文中,我们对ICCV2021的最新论文进行了分类汇总按研究方向整理。包含目标检测、图像分割、目标跟踪、医学影像、3D、模型压缩、图像处理、姿态估计、文本检测等多个方向,同时,我们将对优秀论文解读报道技术直播,欢迎大家关注~

由于编辑器的限制,最新版本的论文汇总请大家前往我们的Github:#ICCV2021/ICCV2019/ICCV2017(Paper/Code/Project/Paper reading



检测

图像目标检测(2D Object Detection)

[5] Active Learning for Deep Object Detection via Probabilistic Modeling

paper:https://arxiv.org/abs/2103.16130

[4] Detecting Invisible People

paper:https://arxiv.org/abs/2012.08419
project:https://www.cs.cmu.edu/~tkhurana/invisible.htm
video:https://youtu.be/StEfnshXrCE

[3] Conditional Variational Capsule Network for Open Set Recognition

paper:https://arxiv.org/abs/2104.09159
code:https://github.com/guglielmocamporese/cvaecaposr

[2] MDETR : Modulated Detection for End-to-End Multi-Modal Understanding(Oral)

paper:https://arxiv.org/pdf/2104.12763
code:https://github.com/ashkamath/mdetr
project:https://ashkamath.github.io/mdetr_page/
colab:https://colab.research.google.com/github/ashkamath/mdetr/blob/colab/notebooks/MDETR_demo.ipynb

[1] DetCo: Unsupervised Contrastive Learning for Object Detection

paper:https://arxiv.org/abs/2102.04803
code:https://github.com/xieenze/DetCo


分割(Segmentation)

图像分割(Image Segmentation)

[2] Labels4Free: Unsupervised Segmentation using StyleGAN

paper:https://arxiv.org/abs/2103.14968
code:https://rameenabdal.github.io/Labels4Free
project:https://rameenabdal.github.io/Labels4Free/

[1] Mining Latent Classes for Few-shot Segmentation(Oral)

paper:https://arxiv.org/abs/2103.15402
code:https://github.com/LiheYoung/MiningFSS


实例分割(Instance Segmentation)

[2] Crossover Learning for Fast Online Video Instance Segmentation

code:https://github.com/hustvl/CrossVIS)

[1] Instances as Queries

paper:https://arxiv.org/abs/2105.01928
code:https://github.com/hustvl/QueryInst


语义分割(Semantic Segmentation)

[1] Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

paper:https://arxiv.org/abs/2006.13144
code:https://github.com/EliasKassapis/CARSSS


神经网络结构设计(Neural Network Structure Design)


Transformer

[3] Rethinking Spatial Dimensions of Vision Transformers

paper:https://arxiv.org/abs/2103.16302
code:https://github.com/naver-ai/pit

[2] Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers(Oral)

paper:https://arxiv.org/pdf/2103.15679.pdf
code:https://github.com/hila-chefer/Transformer-MM-Explainability

[1] Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions(Oral)

paper:https://arxiv.org/abs/2102.12122
code:https://github.com/whai362/PVT)

解读:金字塔视觉Transformer(PVT):用于密集预测的多功能backbone


GAN/生成式/对抗式(GAN/Generative/Adversarial)

[2] Labels4Free: Unsupervised Segmentation using StyleGAN

paper:https://arxiv.org/abs/2103.14968
code:https://rameenabdal.github.io/Labels4Free
project:https://rameenabdal.github.io/Labels4Free/)

[1] EigenGAN: Layer-Wise Eigen-Learning for GANs

paper:https://arxiv.org/abs/2104.12476
code:https://github.com/LynnHo/EigenGAN-Tensorflow


图像处理(Image Processing)

[1] Equivariant Imaging: Learning Beyond the Range Space(Oral)

paper:https://arxiv.org/pdf/2103.14756.pdf


超分辨率(Super Resolution)

[1] Learning for Scale-Arbitrary Super-Resolution from Scale-Specific Networks

paper:https://arxiv.org/abs/2004.03791
code:https://github.com/LongguangWang/ArbSR


风格迁移(Style Transfer)

[1] Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts(字体生成)

paper:https://arxiv.org/abs/2104.00887
code:https://github.com/clovaai/mxfont


估计(Estimation)

姿态估计(Human Pose Estimation)

[1] HuMoR: 3D Human Motion Model for Robust Pose Estimation(Oral)

paper:https://geometry.stanford.edu/projects/humor/docs/humor.pdf
video:https://youtu.be/5VWirxUHG0Y
project:https://geometry.stanford.edu/projects/humor/


图像&视频检索/理解(Image&Video Retrieval/Video Understanding)

行人重识别/检测(Re-Identification/Detection)

[1] TransReID: Transformer-based Object Re-Identification

paper:https://arxiv.org/abs/2102.04378
code:https://github.com/heshuting555/TransReID

解读:来自Transformer的降维打击:ReID各项任务全面领先,阿里&浙大提出TransReID


视觉定位(Visual Localization)

[2] TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization

paper:https://arxiv.org/abs/2103.14862
code:https://github.com/vasgaowei/TS-CAM

[1] Boundary-sensitive Pre-training for Temporal Localization in Videos

paper:https://arxiv.org/abs/2011.10830


图像匹配(Image Matching)

[1] COTR: Correspondence Transformer for Matching Across Images

paper:https://arxiv.org/abs/2103.14167)


三维视觉(3D Vision)

[1] MVTN: Multi-View Transformation Network for 3D Shape Recognition

paper:https://arxiv.org/abs/2011.13244)


目标跟踪(Object Tracking)

[1] Detecting Invisible People

paper:https://arxiv.org/abs/2012.08419
project:https://www.cs.cmu.edu/~tkhurana/invisible.htm
video:https://youtu.be/StEfnshXrCE


遥感图像(Remote Sensing Image)

[1] Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

paper:https://arxiv.org/abs/2103.16607
code:https://github.com/ElementAI/seasonal-contrast


场景图(Scene Graph


场景图生成(Scene Graph Generation)

[1] Unconstrained Scene Generation with Locally Conditioned Radiance Fields

paper:https://arxiv.org/abs/2104.00670


场景图预测(Scene Graph Prediction)

[1] Generative Compositional Augmentations for Scene Graph Prediction

paper:https://arxiv.org/abs/2007.05756
code:https://github.com/bknyaz/sgg


数据处理(Data Processing)


数据增广(Data Augmentation)

[1] MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks

paper:https://arxiv.org/abs/2103.06132


异常检测(Anomaly Detection)

[1] Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning

paper:https://arxiv.org/abs/2101.10030
code:https://github.com/tianyu0207/RTFM


表征学习(Representation Learning)

[1] In-Place Scene Labelling and Understanding with Implicit Scene Representation(Oral)

paper:https://arxiv.org/abs/2103.15875
project:https://shuaifengzhi.com/Semantic-NeRF/

迁移学习(Transfer Learning)

[2] Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

paper:https://arxiv.org/abs/2103.16607
code:https://github.com/ElementAI/seasonal-contrast

[1] Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling

paper:https://arxiv.org/abs/2105.12441

度量学习(Metric Learning)

[1] Learning with Memory-based Virtual Classes for Deep Metric Learning

paper:https://arxiv.org/abs/2103.16940

增量学习(Incremental Learning)

[1] Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning

paper:https://arxiv.org/abs/2106.09701
code:https://github.com/GT-RIPL/AlwaysBeDreaming-DFCIL
project:https://jamessealesmith.github.io/project/dfcil/

对比学习(Contrastive Learning)

[1] CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

paper:https://arxiv.org/abs/2011.11183
code:https://github.com/salesforce/CoMatch

主动学习(Active Learning)

[1] Active Learning for Deep Object Detection via Probabilistic Modeling

paper:https://arxiv.org/abs/2103.16130

视觉推理/视觉问答(Visual Reasoning/VQA)

[2] On the hidden treasure of dialog in video question answering

paper:https://arxiv.org/abs/2103.14517

[1] Just Ask: Learning to Answer Questions from Millions of Narrated Videos(Oral)

paper:https://arxiv.org/abs/2012.00451
code:https://github.com/antoyang/just-ask
project:https://antoyang.github.io/just-ask.html

数据集(Dataset)

[1] 4DComplete: Non-Rigid Motion Estimation Beyond the Observable Surface(4D重建)

paper:https://arxiv.org/abs/2105.01905
dataset:https://github.com/rabbityl/DeformingThings4D)
video:https://youtu.be/QrSsVoTRpWk

其他分类

Pathdreamer: A World Model for Indoor Navigation(视觉导航)

paper:https://arxiv.org/abs/2105.08756

IPOKE: POKING A STILL IMAGE FOR CONTROLLED STOCHASTIC VIDEO SYNTHESIS

paper:https://arxiv.org/abs/2107.02790
code:https://github.com/CompVis/ipoke
project:https://compvis.github.io/ipoke/)

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

paper:https://arxiv.org/abs/2104.00677
project:https://www.ajayj.com/dietnerf

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

paper:https://arxiv.org/abs/2103.13744
code:https://github.com/creiser/kilonerf

你可能感兴趣的:(ICCV2019,深度学习,ICCV,计算机视觉,顶会论文,人工智能)