- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 基于通义大模型的智能客服系统构建实战:从模型微调到API部署
大熊计算机
开发实战语言模型人工智能
1引言本文将深入探讨基于通义大模型的智能客服系统构建全流程,从数据准备、模型微调、性能优化到API部署和系统集成。不同于理论概述,本文将通过实战案例、代码演示和性能数据对比,展示每个环节的技术细节与工程实践。文章面向具备Python和深度学习基础的开发者,重点解决以下核心问题:如何针对客服场景准备和优化训练数据?如何高效微调通义大模型以适配特定业务需求?如何解决大模型部署中的延迟和并发挑战?如何构
- TensorFlow:深度学习基础设施的架构哲学与工程实践革新
双囍菜菜
AI深度学习tensorflow架构
TensorFlow:深度学习基础设施的架构哲学与工程实践革新文章目录TensorFlow:深度学习基础设施的架构哲学与工程实践革新一、计算范式革命:从静态图到动态执行的深度架构剖析1.1静态计算图的编译优化体系1.2动态图模式的实现原理1.3混合执行模式的编译原理二、张量计算引擎的深度架构解析2.1运行时核心组件2.2计算图优化技术2.3分布式训练架构三、可微分编程范式的实现奥秘3.1自动微分系
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 深度学习基础知识总结
1.BatchNorm2d加速收敛:BatchNormalization可以使每层的输入保持较稳定的分布(接近标准正态分布),减少梯度更新时的震荡问题,从而加快模型训练速度。减轻过拟合:批归一化引入了轻微的正则化效果,因为它依赖于mini-batch中的统计信息,这种方式可以减少对单个样本的过度拟合。提高模型性能:在训练过程中,BatchNormalization通过动态调整激活值的分布,让模型更
- 大数据最新大模型学习路线与建议:掌握大模型学习路径
大模型教程
大数据学习人工智能大模型AI大模型程序员AI
1既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新第一章深度学习基础第二章智能对话系统基础第三章大模型基础第四章大模型应用实践第五章大模型实战项目第一章深度学习基础深度学习基础深度学习经典模型解
- 深度学习模型:技术演进、热点突破与未来图景
accurater
c++算法笔记深度学习
第一章深度学习模型的技术演进1.1从感知机到深度神经网络里程碑突破:AlexNet在ImageNet竞赛中实现图像分类性能飞跃,首次验证深度卷积网络(CNN)的潜力。其采用ReLU激活函数、Dropout正则化等创新,奠定现代深度学习基础架构。梯度消失的破解:LSTM网络通过门控机制实现长时序依赖建模,为自然语言处理(NLP)开辟道路,后续双向LSTM、GRU等变体持续优化记忆能力。计算范式革新:
- 我们掌握的技能与进入企业的机会
万能小贤哥
人工智能算法深度学习
深度学习:从基础到实践一、引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人类大脑的信息处理方式,从而实现对复杂数据的自动特征提取和模式识别。近年来,深度学习在计算机视觉、自然语言处理、语音识别等领域取得了巨大的突破,引发了全球范围内的研究和应用热潮。本文将从深度学习的基本概念出发,逐步深入到实际应用,并结合代码示例展示如何实现一个简单的深度学习模型。二、深度学习基础(一)神经网络的
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- YOLOv7在自定义数据集上的Jupyter Notebook训练指南
t0_54program
大数据与人工智能YOLOjupyteride个人开发
在当今的计算机视觉领域,目标检测是一项至关重要的任务,而YOLO(YouOnlyLookOnce)系列算法因其高效性和准确性备受关注。本文将详细介绍如何在JupyterNotebook环境中,利用YOLOv7模型对自定义数据集进行训练。前期准备环境与基础设置:开始之前,你需要具备一定的Python编程经验和深度学习基础知识,并且拥有一台性能足够强大的机器。若没有GPU,DigitalOceanGP
- 自然语言处理 (NLP) 学习路线
我喝AD钙
我的学习笔记自然语言处理学习人工智能
自然语言处理学习路线1.基础准备(可参考mooc学习)2.学习基础NLP技术(可参考mooc学习)3.经典机器学习算法在NLP中的应用(可参考吴恩达机器学习课程)4.深度学习基础(基础参考吴恩达、工具看TF、Keras官网手册)5.深度学习在NLP中的应用(arxiv论文原文和解析博客,实战参考gitee/github)6.现代NLP模型(arxiv论文原文和解析博客,实战参考gitee/gith
- MONAI 高级开发者研究教程专栏:从精通到引领医学影像AI创新
LIUDAN'S WORLD
MONAI高级开发者研究教程专栏人工智能
专栏导语:本专栏旨在为已有深度学习基础并希望在医学影像AI领域进行深入研究的高级开发者提供一套系统性的MONAI学习与实践指南。我们将不仅仅停留在“如何使用”,更会深入探讨“为何如此设计”以及“如何扩展与创新”,助您充分利用MONAI的强大功能,引领前沿研究。第一章MONAI基石与医学影像AI生态MONAI的设计哲学与核心架构解析:不仅仅是介绍:深入探讨MONAI诞生的背景,解决了医学影像AI的哪
- 深度学习面试八股简略速览
石去皿
学习记录经验分享深度学习人工智能
在准备深度学习面试时,你可能会感到有些不知所措。毕竟,深度学习是一个庞大且不断发展的领域,涉及众多复杂的技术和概念。但别担心,本文将为你提供一份全面的指南,从基础理论到实际应用,帮助你在面试中脱颖而出。1.深度学习基础:理解核心概念1.1神经网络基础神经网络是深度学习的核心,它由许多简单的处理单元(神经元)组成,这些神经元通过权重连接在一起。每个神经元接收输入,通过一个激活函数进行处理,然后输出结
- 【第15章:量子深度学习与未来趋势—15.2 量子深度学习模型的基础理论与实现方法探索】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习DeepSeek人工智能计算机视觉强化学习量子计算量子深度学习
还记得《三体》中智子锁死地球科技的绝望吗?今天AI领域正面临类似的困境——GPT-4训练需要消耗1.7万个NVIDIAA100GPU运行3个月,能耗相当于300个家庭一年的用电量。更可怕的是,图像识别任务的参数空间维度每增加1级,计算量就会爆炸式增长10^8倍。这时候量子计算犹如破壁者,带着量子并行计算和指数级存储空间这两把密钥,正在打开AI的降维打击时代。一、量子深度学习基础:从量子比特到量子神
- 【深度学习基础/面试高频问题】归一化-为何BN层能帮助模型优化
无敌悦悦王
面试准备基础理论深度学习人工智能计算机视觉图像处理
深度学习基础知识为何BN能够帮助训练优化1、发现问题2、BatchNorm的性能是否源于控制内部协变量偏移?3、为什么BatchNorm有效?1)BatchNorm的平滑效果2)优化景观的探索3)BatchNorm是平滑景观的最佳(唯一?)方法吗?4、理论分析5、相关工作6、结论参考文献:1、HowDoesBatchNormalizationHelpOptimization?HowDoesBatc
- 第21节:深度学习基础-激活函数比较(ReLU, Sigmoid, Tanh)
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习算法人工智能
1.引言在深度学习领域,激活函数是神经网络中至关重要的组成部分它决定了神经元是否应该被激活以及如何将输入信号转换为输出信号激活函数为神经网络引入了非线性因素,使其能够学习并执行复杂的任务没有激活函数,无论神经网络有多少层,都只能表示线性变换,极大地限制了网络的表达能力本文将深入探讨三种最常用的激活函数:ReLU(RectifiedLinearUnit)、Sigmoid和Tanh(双曲正切函数),从
- AI Python 教程
Empty-Filled
人工智能python开发语言
AIPython教程为什么使用Python学习AI?AI之Python前提AIPython教程人工智能AI之Python-机器学习监督学习回归算法分类算法非监督学习聚类算法数据降维增强学习AI之Python-深度学习深度学习基础深度学习架构AI之Python-自然语言处理文本处理和表示文本处理文本表示词汇语义学AI之Python-计算机视觉图像处理和转换图像识别架构物体检测架构两步检测器单步检测器
- 第20节:深度学习基础-反向传播算法详解
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习神经网络人工智能机器学习
一、引言反向传播算法(Backpropagation,简称BP算法)是深度学习领域最为核心的算法之一,它为神经网络提供了一种高效计算梯度的方法,使得基于梯度的优化成为可能。自20世纪80年代被重新发现并广泛应用以来,反向传播算法已经成为训练多层神经网络的标准方法,推动了深度学习革命的发展。反向传播算法的本质是链式法则(ChainRule)在神经网络中的巧妙应用,它通过从输出层向输入层反向传播误差信
- 深度学习模型:从基础到前沿的技术解析与实践指南
爱吃青菜的大力水手
深度学习人工智能
深度学习模型全面解析文章框架,结合代码演示与图形展示,内容深入浅出:深度学习模型:从基础到前沿的技术解析与实践指南第一章深度学习基础与核心思想1.1深度学习的本质与优势表示学习理论:通过多层非线性变换自动提取数据特征,无需人工设计特征(如CNN对边缘→纹理→物体的逐层抽象)与传统机器学习的对比:以ImageNet分类为例,AlexNet将Top-5错误率从26.2%降至15.3%,证明了深度学习的
- PyTorch深度学习基础/Logistic回归
Zeal Just Hurries
深度学习人工智能机器学习pytorch回归python
一、PyTorch深度学习基础1、Tensor对象及其运算Tensor对象是一个多维的数据结构,用于存储数值型数据,通常用在深度学习中进行各种计算。Tensor对象可以简单理解为一个高维数组,它是矩阵概念的扩展。在深度学习领域,特别是在使用某些框架如PyTorch或TensorFlow时,Tensor扮演着核心角色。它们不仅拥有丰富的数学属性,还内置了一些专为深度学习设计的运算,这使得Tensor
- 探索人工智能在医疗诊断中的前沿应用:深度学习助力精准医疗
Thanks_ks
IT洞察集深度学习医疗诊断医学影像识别基因组学智能辅助诊断精准医疗个性化治疗
目录引言一、深度学习基础与医疗诊断的融合1.深度学习的自适应学习能力2.特征提取的自动化与高效性3.多模态数据的融合处理4.实时诊断与远程医疗的潜力5.个性化医疗的推动二、深度学习在医学影像识别中的应用1.肿瘤检测与分类2.眼科疾病筛查3.病变识别4.脑部疾病诊断5.骨折检测与评估6.多模态影像融合分析7.自动化报告生成三、深度学习在基因组学中的应用1.精准遗传病诊断2.疾病风险预测与预防3.精准
- 深度学习基础知识-全连接层
Jul.01
深度学习人工智能神经网络
全连接(FullyConnected,简称FC)层是深度学习神经网络中一种基本的层结构。它主要用于神经网络的最后几层,将高层特征映射到输出空间中。全连接层对数据的每个输入节点与每个输出节点进行连接,用于实现输入特征和输出结果之间的映射关系。以下是对全连接层的详细解释。1.全连接层的结构和原理在全连接层中,每一个输入节点与每一个输出节点之间都有一条连接线。假设输入层有n个神经元,输出层有m个神经元,
- 深度学习基础:从入门到理解核心概念
巷955
深度学习人工智能
引言近年来,深度学习(DeepLearning)已成为人工智能领域最热门的研究方向之一。从AlphaGo战胜人类围棋冠军,到ChatGPT等大型语言模型的惊艳表现,深度学习技术正在深刻改变我们的生活和工作方式。本文将系统介绍深度学习的基础知识,帮助初学者建立对这一领域的全面认识。一、什么是深度学习?深度学习是机器学习的一个子领域,它通过模拟人脑神经元的工作方式,构建多层的神经网络模型,从数据中自动
- 深度学习基础原理知识整理
MayByte
深度学习深度学习人工智能
深度学习基础原理知识整理线性回归模型线性回归模型定义假设给定数据集(D={(x1,y1),(x2,y2),…,(xm,ym)}),其中xi=(xi1;xi2;…;xid),xi∈Rx~i~\in\mathbb{R}xi∈R。线性回归就是试图学得一个线性模型,尽可能准确地预测实际输出值。通俗地讲,即求属性与结果之间的线性关系。线性回归模型的函数表达式为:f(x)=w1x1+w2x2+⋯+wnxn+b
- 人脸识别:基于深度学习的人脸识别_(2).深度学习基础
zhubeibei168
检验检测&人脸识别深度学习人工智能开源计算机视觉人脸识别
深度学习基础引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人脑的结构和功能,从而实现对复杂数据模式的自动学习和识别。在计算机视觉领域,深度学习已经取得了显著的成果,尤其是在人脸识别方面。本节将介绍深度学习的基本概念、常用算法和框架,为后续的人脸识别技术打下坚实的基础。神经网络基础什么是神经网络神经网络是一种计算模型,它由大量的节点(或称为神经元)组成,这些节点通过连接形成一个网络。
- 数据处理专题(十二)
程序员的世界你不懂
数据分析百度经验分享
深度学习基础01目标了解深度学习的基本概念。02学习内容神经网络基础Keras基础实践:使用Keras构建一个简单的神经网络模型03代码示例1.导入必要的库importnumpyasnpimportpandasaspdimporttensorflowastffromtensorflow.keras.modelsimportSequentialfromtensorflow.keras.layer
- 【深度学习基础】Windows实时查看GPU显存占用、功耗、进程状态
叫我东方小巴黎
机器学习基础深度学习人工智能
1.nvitoppython环境下,例如anacondaprompt:condaenvlistactivatexxxpipinstallnvitopnvitop实时查看GPU显存占用、功耗、进程状态显示信息含义https://blog.csdn.net/Sep21m_wyy/article/details/141754651顶部信息栏当前时间:显示当前的系统时间(SatAug3116:33:032
- 【深度学习基础】PyCharm anaconda PYTorch python CUDA cuDNN 环境配置
叫我东方小巴黎
机器学习基础深度学习pythonpycharm
这里写目录标题PyCharm安装anaconda安装PYTorch安装确定python版本CUDA安装cuDNN安装检验环境是否配置成功参照:PyCharm安装官网下载anaconda安装官网下载:https://www.anaconda.com/download配置环境变量,增加D:\WorkSoftware\Install\Anaconda3D:\WorkSoftware\Install\An
- 【深度学习基础】第四十七课:BLEU得分
x-jeff
深度学习基础深度学习人工智能nlp
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.BLEU得分机器翻译的一大难题是一个法语句子可以有多种英文翻译,并且翻译质量都同样好。那么我们该怎样评估一个机器翻译系统呢?常用的一个方法就是使用BLEU得分。BLEU原文:PapineniK,RoukosS,WardT,etal.Bleu:amethodforautomaticevaluationofmachi
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe