深度学习基础--loss与激活函数--感知损失(Perceptual Loss)

感知损失(Perceptual Loss)

  常用于GAN网络生成。
  Perceptual Loss的出现证明了一个训练好的CNN网络的feature map可以很好的作为图像生成中的损失函数的辅助工具。
  GAN可以利用监督学习来强化生成网络的效果。其效果的原因虽然还不具可解释性,但是可以理解为可以以一种不直接的方式使生成网络学习到规律。

  图像风格转换算法将图片生成以生成的方式进行处理,如风格转换,是从一张噪音图(相当于白板)中得到一张结果图,具有图片A的内容和图片B的风格。而Perceptual Losses则是将生成问题看做是变换问题。即生成图像是从内容图中变化得到。

  以前的超分辨率方法,大都使用平均平方误差(Mean Square Error,简称MSE)导出的损失函数(loss),直接最小化MSE loss虽能得到不错的超分辨率结果,但难以避免细节上的模糊,这是MSE本身设计问题导致的。
  ECCV 2016时中提出使用Perceptual loss替代MSE loss,获得了细节更丰富的超分辨率结果,但仍然有进步的空间。而Ledig等人的这篇论文在Perceptual Loss基础上加入GAN loss,约束超分辨率结果需符合自然图像分布规律,使超分辨率结果获得了非常逼真的细节效果。此方法也并非全无缺点,由于GAN loss考虑的是自然图像的整体分布,与具体输入图像(即测试图像)无关,因此恢复的图像细节可能并不忠实于原图,类似「捏造」出假细节,因此不适用于一些追求细节真实性的应用。

你可能感兴趣的:(深度学习基础)