使 用 D C G A N 生 成 动 漫 人 物 头 像 使用DCGAN生成动漫人物头像 使用DCGAN生成动漫人物头像
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import glob
import os
os.listdir('../input/anime-faces/data/data')[:10]
print('Tensorflow version: {}'.format(tf.__version__))
image_path = glob.glob('../input/anime-faces/data/data/*.png')
len(image_path)
def load_preprosess_image(path):
image = tf.io.read_file(path)
image = tf.image.decode_png(image, channels=3)
image = tf.cast(image, tf.float32)
image = (image / 127.5) - 1
return image
image_ds = tf.data.Dataset.from_tensor_slices(image_path)
AUTOTUNE = tf.data.experimental.AUTOTUNE
image_ds = image_ds.map(load_preprosess_image, num_parallel_calls=AUTOTUNE)
image_ds
BATCH_SIZE = 64
image_count = len(image_path)
image_ds = image_ds.shuffle(image_count).batch(BATCH_SIZE)
image_ds = image_ds.prefetch(AUTOTUNE)
def generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(8*8*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((8, 8, 256)))
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(32, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
return model
generator = generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
plt.imshow((generated_image[0, :, :, :3] + 1)/2)
def discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(32, (5, 5), strides=(2, 2), padding='same',
input_shape=[64, 64, 3]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dense(1024))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(1))
return model
discriminator = discriminator_model()
decision = discriminator(generated_image)
print(decision)
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-5)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-5)
EPOCHS = 800
noise_dim = 100
num_examples_to_generate = 4
seed = tf.random.normal([num_examples_to_generate, noise_dim])
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(6, 6))
for i in range(predictions.shape[0]):
plt.subplot(2, 2, i+1)
plt.imshow((predictions[i, :, :, :] + 1)/2)
plt.axis('off')
plt.show()
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
if epoch%10 == 0:
generate_and_save_images(generator,
epoch + 1,
seed)
generate_and_save_images(generator,
epochs,
seed)
train(image_ds, EPOCHS)