分布式ID生成算法-雪花算法

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

分布式ID生成算法-雪花算法_第1张图片

1. 1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。

2. 41bit-时间戳,用来记录时间戳,毫秒级。
- 41位可以表示2^41 - 1个数字,
- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 2^41 - 1,减1是因为可表示的数值范围是从0开始算的,而不是1。
- 也就是说41位可以表示2^41 - 1个毫秒的值,转化成单位年则是69年

3. 10bit-工作机器id

用来记录工作机器id。10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器)。

4. 12bit-序列号,序列号,用来记录同毫秒内产生的不同id。

- 12位(bit)可以表示的最大正整数是2^12-1=4095,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

需要注意的一点是:当后端传Long类型给前端, Long类型数据大于17位时,会存在精度丢失的问题(前端拿到的数据: 第16位会四舍五入, 17位后的数据自动用0代替),在Json中就会出现精度丢失的情况。解决办法是,在进行Json序列化时,以String的形式去序列化:

@JsonSerialize(using = ToStringSerializer.class)

private Long uid;
 

SnowFlake可以保证:

  1. 所有生成的id按时间趋势递增
  2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

算法实现(Java)

public class IdWorker{

    //下面两个每个5位,加起来就是10位的工作机器id
    private long workerId;    //工作id
    private long datacenterId;   //数据id
    //12位的序列号
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence){
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    //初始时间戳
    private long twepoch = 1288834974657L;

    //长度为5位
    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    //最大值
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    //序列号id长度
    private long sequenceBits = 12L;
    //序列号最大值
    private long sequenceMask = -1L ^ (-1L << sequenceBits);
    
    //工作id需要左移的位数,12位
    private long workerIdShift = sequenceBits;
   //数据id需要左移位数 12+5=17位
    private long datacenterIdShift = sequenceBits + workerIdBits;
    //时间戳需要左移位数 12+5+5=22位
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    
    //上次时间戳,初始值为负数
    private long lastTimestamp = -1L;

    public long getWorkerId(){
        return workerId;
    }

    public long getDatacenterId(){
        return datacenterId;
    }

    public long getTimestamp(){
        return System.currentTimeMillis();
    }

     //下一个ID生成算法
    public synchronized long nextId() {
        long timestamp = timeGen();

        //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }
        
        //将上次时间戳值刷新
        lastTimestamp = timestamp;

        /**
          * 返回结果:
          * (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
          * (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
          * (workerId << workerIdShift) 表示将工作id左移相应位数
          * | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
          * 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
        */
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    //获取时间戳,并与上次时间戳比较
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    //获取系统时间戳
    private long timeGen(){
        return System.currentTimeMillis();
    }

    //---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1,1,1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}

你可能感兴趣的:(架构设计,分布式ID生成,雪花算法,SnowFlake)