开课吧知识图谱实战【视频代码齐全】

开课吧知识图谱实战【视频代码齐全】_第1张图片

 

当然,真正一直在研究CNN的专家是Yann LeCun,小扎后来拉他去FB做AI research的头。第一个CNN模型就是他搞出来的,即LeNet,原来就是做图像数字识别。不得不说,CNN非常适合2-D信号的处理任务,RNN呢,是时域上的拓展。

现在CNN在计算机视觉应用的非常成功,传统机器学习方法基本被弃之不用。其中最大的一个原因就是,图像数据的特征设计,即特征描述,一直是计算机视觉头痛的问题,在深度学习突破之前10多年,最成功的图像特征设计 (hand crafted feature)是SIFT,还有著名的Bag of visual words,一种VQ方法。后来大家把CNN模型和SIFT比较,发现结构还蛮像的:),之后不是也有文章说RNN和CRF很像吗。

开课吧知识图谱实战【视频代码齐全】_第2张图片

 开课吧知识图谱实战【视频代码齐全】_第3张图片

 

简单回顾一下:

  • AlexNet应该算第一个深度CNN;

  • ZFNet采用DeconvNet和visualization技术可以监控学习过程;

  • VGGNet采用小滤波器3X3去取代大滤波器5X5和7X7而降低计算复杂度;

  • GoogleNet推广NIN的思路定义Inception基本模块(采用多尺度变换和不同大小滤波器组合,即1X1,3X3,5X5)构建模型;

  • Highway Networks借鉴了RNN里面LSTM的gaiting单元;

  • ResNet是革命性的工作,借鉴了Highway Networks的skip connection想法,可以训练大深度的模型提升性能,计算复杂度变小;

  • Inception-V3/4用1X7和1X5取代大滤波器5X5和7X7,1X1滤波器做之前的特征瓶颈,这样卷积操作变成像跨通道(cross channel)的相关操作;

  • DenseNet主要通过跨层链接解决vanishing gradient问题;

  • SE-Net是针对特征选择的设计,gating机制还是被采用;

  • 前段时间流行的Attention机制也是借鉴于LSTM,实现object-aware的context模型。

你可能感兴趣的:(知识图谱,音视频,人工智能)