除法变成*10的减法
前缀和的小技巧
ios : : sync_with_stdio( false);l
消时
二维前缀和
二维差分
差分,O(·1·)
高精度乘法
#include
#include
using namespace std;
vector mul(vector &A, int b)
{
vector C;
int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector A;
for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
auto C = mul(A, b);
for (int i = C.size() - 1; i >= 0; i -- ) printf("%d", C[i]);
return 0;
}
//前缀和
#include
using namespace std;
const int N = 100010;
int n, m;
int a[N], s[N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) s[i] = s[i - 1] + a[i]; // 前缀和的初始化
while (m -- )
{
int l, r;
scanf("%d%d", &l, &r);
printf("%d\n", s[r] - s[l - 1]); // 区间和的计算
}
return 0;
}
//高精度除法
#include
#include
#include
using namespace std;
vector div(vector &A, int b, int &r)
{
vector C;
r = 0;
for (int i = A.size() - 1; i >= 0; i -- )
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
vector A;
int B;
cin >> a >> B;
for (int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
int r;
auto C = div(A, B, r);
for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];
cout << endl << r << endl;
return 0;
}
//子矩阵的和
#include
using namespace std;
const int N = 1010;
int n, m, q;
int s[N][N];
int main()
{
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &s[i][j]);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
while (q -- )
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
}
return 0;
}
//差分
#include
using namespace std;
const int N = 100010;
int n, m;
int a[N], b[N];
void insert(int l, int r, int c)
{
b[l] += c;
b[r + 1] -= c;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) insert(i, i, a[i]);
while (m -- )
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(l, r, c);
}
for (int i = 1; i <= n; i ++ ) b[i] += b[i - 1];
for (int i = 1; i <= n; i ++ ) printf("%d ", b[i]);
return 0;
}
//差分矩阵
#include
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main()
{
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &a[i][j]);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
insert(i, j, i, j, a[i][j]);
while (q -- )
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
}
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ ) printf("%d ", b[i][j]);
puts("");
}
return 0;
}
//最长连续不重复子序列
#include
using namespace std;
const int N = 100010;
int n;
int q[N], s[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);
int res = 0;
for (int i = 0, j = 0; i < n; i ++ )
{
s[q[i]] ++ ;
while (j < i && s[q[i]] > 1) s[q[j ++ ]] -- ;
res = max(res, i - j + 1);
}
cout << res << endl;
return 0;
}
//数组元素的目标和
#include
using namespace std;
const int N = 1e5 + 10;
int n, m, x;
int a[N], b[N];
int main()
{
scanf("%d%d%d", &n, &m, &x);
for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
for (int i = 0; i < m; i ++ ) scanf("%d", &b[i]);
for (int i = 0, j = m - 1; i < n; i ++ )
{
while (j >= 0 && a[i] + b[j] > x) j -- ;
if (j >= 0 && a[i] + b[j] == x) cout << i << ' ' << j << endl;
}
return 0;
}
//二进制中1的个数
#include
using namespace std;
int main()
{
int n;
scanf("%d", &n);
while (n -- )
{
int x, s = 0;
scanf("%d", &x);
for (int i = x; i; i -= i & -i) s ++ ;
printf("%d ", s);
}
return 0;
}
//区间和
#include
#include
#include
using namespace std;
typedef pair PII;
const int N = 300010;
int n, m;
int a[N], s[N];
vector alls;
vector add, query;
int find(int x)
{
int l = 0, r = alls.size() - 1;
while (l < r)
{
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1;
}
vector::iterator unique(vector &a)
{
int j = 0;
for (int i = 0; i < a.size(); i ++ )
if (!i || a[i] != a[i - 1])
a[j ++ ] = a[i];
// a[0] ~ a[j - 1] 所有a中不重复的数
return a.begin() + j;
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; i ++ )
{
int x, c;
cin >> x >> c;
add.push_back({x, c});
alls.push_back(x);
}
for (int i = 0; i < m; i ++ )
{
int l, r;
cin >> l >> r;
query.push_back({l, r});
alls.push_back(l);
alls.push_back(r);
}
// 去重
sort(alls.begin(), alls.end());
alls.erase(unique(alls), alls.end());
// 处理插入
for (auto item : add)
{
int x = find(item.first);
a[x] += item.second;
}
// 预处理前缀和
for (int i = 1; i <= alls.size(); i ++ ) s[i] = s[i - 1] + a[i];
// 处理询问
for (auto item : query)
{
int l = find(item.first), r = find(item.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}
#include
#include
#include
using namespace std;
typedef pair PII;
void merge(vector &segs)
{
vector res;
sort(segs.begin(), segs.end());
int st = -2e9, ed = -2e9;
for (auto seg : segs)
if (ed < seg.first)
{
if (st != -2e9) res.push_back({st, ed});
st = seg.first, ed = seg.second;
}
else ed = max(ed, seg.second);
if (st != -2e9) res.push_back({st, ed});
segs = res;
}
int main()
{
int n;
scanf("%d", &n);
vector segs;
for (int i = 0; i < n; i ++ )
{
int l, r;
scanf("%d%d", &l, &r);
segs.push_back({l, r});
}
merge(segs);
cout << segs.size() << endl;
return 0;
}
解题卡片:
1、二分法关键在于不陷入死循环,找到一个最适合点,对左右径行递归,同时避免死循环
2、快速排序关键与双指针有关,不断地减少逆序
3、归并排序除了快、稳定,而且还可以求逆序对:
归并排序:
1.[L,R]=> [L, mid], [mid + 1,R]2.递归排序[L, mid]和[mid + 1,R]
3.归并,将左右两个有序序列合并成一个有序序列
具体而言,归并如何求出逆序对?
首先,归并是将数据不断的划分,直到最小,然后将最小的那部分不断地合并,而左边的没有用,先用的右边的那一块进行归并,那么就会产生逆序对!
总而言之,思考要往人类能够理解的方向上靠,否则还是会对身心造成伤害、、、
4、对于浮点数的二分法,也就是用牛顿法,二分法去做就好了
5、qi大于qj,那么qi后的数都与qj逆序(逆序对)
6、运行小程序,python和js都很快,因为不需要编译;而C++和java是需要编译的。
7、一维差分需要二重,二维差分需要四重,三维差分需要八重。
有问题可以留言探讨~~