Tensorflow2.0实现|用Python实现多智能体强化学习(MARL)求解两AGV流水车间联合(Two-AGV-FSP)调度问题

注:这篇文章与代码实现仅为个人实践小项目,没有出处!除此处代码展示,还可前往个人

Github进行下载,下载地址:Aihong-Sun/MARL_for_Two_AGV_FSP: this rope use Multi-Agent Reinforcement Learning to solve Two AGVs intergrated Flow shop scheduling problem (github.com)

复现环境:

2 tensorflow==2.2.0

3 Keras==2.3.0 

简单描述:

(1)state空间长度为机器的数量,取值,若机器的输入输出缓冲区及机器上存在工件,取“2”,否则,取“1”.

(2)action:AGV的Action为所到达的机器位置

(3)奖励:机器到达时间-所选工件在当前机器的完工时间

(4)状态转移,AGV将工件从上道工件完工机器输出缓冲区送至下道机器的输入缓冲区;

(5)采用了两种经验回放方式进行测试:

        a:普通的经验回放机制

        b:优先经验回放机制

注:此文章仅提供MARL_Two_AGV_FSP的求解思路和流程,不为最优结果,相关状态、动作、奖励等设置仅做了简单处理。

相关文献阅读可见:

​​​​​​论文阅读|《Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments》(NeurlPS,2017)(MADDPG)

强化学习|多智能体深度强化学习(博弈论—>多智能体强化学习)

论文阅读|《Bi-level Actor-Critic for Multi-agent Coordination》(AAAI 2020)(附带源码链接)

论文阅读|《作业车间制造系统中单台多载自动导引车实时无死锁控制策略》

论文阅读|《用支持向量机求解AGV调度问题》(附带源码)

论文阅读|《带阻塞约束的无缓冲作业车间单元调度与自动导引车》

论文阅读|AGV调度优化研究综述

论文阅读|《用蚁群算法求解作业车间与AGVs无路径冲突的集成调度问题》

论文阅读|《制造环境下多AGV调度的强化学习方法》

AGV调度优化系列论文解读与汇总

论文阅读|《一种基于多智能体的协同调度与路由方法》

论文阅读|《强化学习在加工时间可变的机器人流水车间调度中的应用》

具体代码如下:

1 Environment/Flow_Shop.py


class Job:
    def __init__(self,idx,handling_time):
        self.index=idx
        self.handling_time=handling_time
        # self.waiting_time=0
        # self.using_time=[]
        self.start=0
        self.end=0
        self.Current_Operation=0
        self.Cur_PT=None
        self.arrive=0

    def finish(self):
        del self.handling_time[0]

    def handling(self,start,machine):
        self.start=start
        self.Cur_PT=self.handling_time[machine]
        self.end=self.start+ self.Cur_PT

    def wait_time(self,t):
        return t-self.end

class Machine:
    def __init__(self,idx):
        self.index=idx
        self.IB=[]      #输入缓冲区
        self.OB=[]      #输出缓冲区
        self.Processed=[]
        self.Processing=None
        self.using_time=[]
        self.start=0
        self.end=0

    def state(self):
        '''
        There are 4 state for this machine: 
        (1)OB is empty and machine is idle;
        (2)OB is empty and machine is busy;
        (3)OBi is occupied and machine is idle;
        (4)OBi is occupied and machine is busy.
        :param t: 
        :return: 1/2/3/4 
        '''
        if self.Processing==None and self.OB==[] and self.IB==[]:
            return 1
        else:
            return 2


    def handling(self):
        if self.IB[0].arrive>=self.end:
            self.start=self.IB[0].arrive
        else:
            self.start = self.end
        self.IB[0].handling(self.start,self.index)
        self.end = self.IB[0].end
        self.Processing = self.IB[0]
        del self.IB[0]

    def change_end(self,t):
        self.end = t

    def update(self,t):
        if self.IB==[] and self.Processing==None:
            if self.end
        self.IB.append(Job)

class AGV:
    def __init__(self):
        self.trace=[0]
        self.using_time=[]
        self._on=[]
        self.Current_Site=0
        self.start=0
        self.end=0

    def send_to(self,site,s,t,load=None):
        self.start=s
        self.end=self.start+t
        self.using_time.append([self.start,self.end])
        self._on.append(load)
        self.Current_Site=site
        self.trace.append(site)

class Two_Robots_FS_Env:
    def __init__(self,args):
        self.J_num=args.n
        self.PT=args.PT
        self.M_num=args.m
        self.AGV_num=args.AGV_num
        self.agv_trans=args.agv_trans
        self.Create_Item()
        self._s=None               #当前状态
        self.next_s=None
        self.terminal_state=[1 for i in range(self.M_num)]
        self.terminal_state[-1]=2

    def C_max(self):
        t=0
        for J in self.Jobs:
            if t);
                    (2)trasfer job from action machine to next machine(site :action +1)
        :param t: 
        :param action: 
        :param agv: 
        :return: new_t
            in which new_t means new time point
            besides,update flow shop environment state
        '''
        agv=self.AGVs[agv_num]


        # first transfer: unload
        if agv.Current_Site==action:
            trans_time1=0
        else:
            trans_time1=self.cul_trans_t(agv_num,agv.Current_Site,action)
        agv.send_to(action,t,trans_time1,load=None)

        t1=t+trans_time1
        self.update_Item(t1)
        #judge whether agv need to waiting beside machine
        wait=0
        if self.Machines[action].OB!=[] :
            select_Job=self.Machines[action].OB[0]      #action:target machine
            if select_Job.end>t1:
                wait=select_Job.end-t1
        elif self.Machines[action].Processing!=None:
            wait=self.Machines[action].end-t1
            select_Job=self.Machines[action].Processing
        else:
            reward=-99
            return t1,self.next_s,reward,done
        JC=select_Job.end
        t2 = t1 + wait
        self.update_Item(t2)
        self.Machines[action].OB.remove(select_Job)

        targrt_site=action+1
        trans_time2=self.agv_trans[agv_num][action]
        agv.send_to(targrt_site, t2, trans_time2, load=select_Job.index)

        #next time point
        t3=t2+trans_time2
        select_Job.arrive=t3
        self.Machines[action + 1].put_in_Job(select_Job)
        self.update_Item(t3)

        RA=t1
        if agv==0:
            reward=self.r1(JC,RA)
        else:
            reward = self.r1(JC, RA)
        self.Env_State()
        if self.next_s==self.terminal_state:
            done=True
            self.rest_work()
        return t3,self.next_s,reward,done

    #this step is use for MADDPG:
    def step(self,actions,t):
        t_n=[]
        obs_n = []
        reward_n = []
        done_n = []
        info_n = {'n': []}
        d=False
        for i in range(len(actions)):
            if not d:
                t0,s,r,d=self.scheduling(t[i],actions[i],i)
            # print(d)
            if d:
                obs_n.append(s)
                t_n.append(t0)
                reward_n.append(r)
                done_n.append(d)
                if len(t_n)==1:
                    obs_n.append(s)
                    t_n.append(t0)
                    reward_n.append(r)
                    done_n.append(d)
                return t_n,obs_n, reward_n, done_n, info_n
            else:
                obs_n.append(s)
                t_n.append(t0)
                reward_n.append(r)
                done_n.append(d)
        return t_n, obs_n, reward_n, done_n, info_n

    #reward function 1:used to minimise robot idle(delay) time
    def r1(self,JC,RA):
        return JC-RA

    #reward function 2:used to minimise job waiting time
    def r2(self,JC,RA):
        return RA-JC

    def reset1(self):
        self.Create_Item()
        self.agv1 = AGV()
        self.agv2 = AGV()
        self._s = None  # 当前状态
        self.next_s = None
        for Ji in self.Jobs:
            self.Machines[0].put_in_Job(Ji)
        self.Machines[0].handling()
        self.Env_State()
        done=False
        t=[0,0]
        return t,self.next_s,done

    def reset(self):
        self.Create_Item()
        self.agv1 = AGV()
        self.agv2 = AGV()
        self._s = None  # 当前状态
        self.next_s = None
        for Ji in self.Jobs:
            self.Machines[0].put_in_Job(Ji)
        self.Machines[0].handling()
        self.Env_State()
        done=[False,False]
        t=[0,0]
        s=[self.next_s,self.next_s]
        return t,s,done


if __name__=="__main__":
    from Gantt_graph import Gantt
    from simple_MADRL.Params import args
    import random
    random.seed(64)

    fs=Two_Robots_FS_Env(args)
    t, state, done=fs.reset()
    t_i=[0,0]
    while True:
        for i in range(2):
            action_choice=[]
            for j in range(len(fs.Machines)-1):
                if fs.Machines[j].OB!=[] or fs.Machines[j].Processing!=None:
                    action_choice.append(j)
            if action_choice!=[]:
                action=random.choice(action_choice)
            t_i[i],next_state,reward,done=fs.scheduling(t_i[i],action,i)
            state=next_state
            Gantt(fs.Machines,fs.AGVs)
            if done:
                # Gantt(fs.Machines, fs.AGVs)
                break
        if done:
            break
    print(state)
    Gantt(fs.Machines, fs.AGVs)






2 Environment/Gantt_graph.py

import matplotlib.pyplot as plt
import numpy as np

#注:此处的Machine和AGV分别表示Machine类列表和AGV类列表
def Gantt(Machines,agvs):
    plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 如果要显示中文字体,则在此处设为:SimHei
    plt.rcParams['axes.unicode_minus'] = False  # 显示负号
    M = ['red', 'blue', 'yellow', 'orange', 'green', 'palegoldenrod', 'purple', 'pink', 'Thistle', 'Magenta',
         'SlateBlue', 'RoyalBlue', 'Cyan', 'Aqua', 'floralwhite', 'ghostwhite', 'goldenrod', 'mediumslateblue',
         'navajowhite','navy', 'sandybrown', 'moccasin']
    Job_text=['J'+str(i+1) for i in range(100)]
    Machine_text=['M'+str(i+1) for i in range(50)]
    t = 0
    for k in range(len(agvs)):
        for m in range(len(agvs[k].using_time)):
            if agvs[k].using_time[m][1] - agvs[k].using_time[m][0] != 0:
                if agvs[k]._on[m]!=None:
                    plt.barh(k, width= agvs[k].using_time[m][1]- agvs[k].using_time[m][0],
                                    height=0.6,
                                    left=agvs[k].using_time[m][0],
                                    color=M[agvs[k]._on[m]],
                                    edgecolor='black')
                else:
                    plt.barh(k, width=agvs[k].using_time[m][1] - agvs[k].using_time[m][0],
                             height=0.6,
                             left=agvs[k].using_time[m][0],
                             color='white',
                             edgecolor='black')
                # plt.text(x=agvs[k].using_time[m][0]+(agvs[k].using_time[m][1] - agvs[k].using_time[m][0])/2-2,
                #          y=k-0.05,
                #          s=Machine_text[agvs[k].trace[m]]+'-'+Machine_text[agvs[k].trace[m+1]],
                #          fontsize=5)
            if  agvs[k].using_time[m][1]>t:
                t=agvs[k].using_time[m][1]

    for i in range(len(Machines)):
        for j in range(len(Machines[i].using_time)):
            if Machines[i].using_time[j][1] - Machines[i].using_time[j][0] != 0:
                plt.barh(i+k+1, width=Machines[i].using_time[j][1] - Machines[i].using_time[j][0],
                         height=0.8, left=Machines[i].using_time[j][0],
                         color=M[Machines[i].Processed[j]],
                         edgecolor='black')
                # plt.text(x=Machines[i].using_time[j][0]+(Machines[i].using_time[j][1] - Machines[i].using_time[j][0])/2 - 0.1,
                #          y=i+k+1,
                #          s=Job_text[Machines[i].Processed[j]],
                #          fontsize=12)
            if Machines[i].using_time[j][1]>t:
                t=Machines[i].using_time[j][1]

    list=['AGV1','AGV2']
    list1=['M'+str(_+1) for _ in range(len(Machines))]
    list.extend(list1)
    plt.xlim(0,t)
    plt.hlines(k + 0.4,xmin=0,xmax=t, color="black")  # 横线
    plt.yticks(np.arange(i + k + 2), list,size=13,)
    plt.title('Scheduling Gantt chart')
    plt.ylabel('Machines')
    plt.xlabel('Time(s)')
    plt.show()

3 Environment/Test1.py

'''
start date: 2021/9/14
from thesis:
    Arviv,,Kfir等.Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem[J].
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH,2016,54(4):1196-1209.
'''

import random
import numpy as np

random.seed(64)

def Generate(n,m,machine_speed,AGV_speed_pair):
    AGV_speed= [[5, 15], [15, 25], [25, 35]]
    Mch_speed=[[15,25],[25,45]]
    AGV1_speed,AGV2_speed=AGV_speed[AGV_speed_pair[0]],AGV_speed[AGV_speed_pair[1]]
    Ms=Mch_speed[machine_speed]
    PT=[]
    for i in range(n):
        PT_i=[random.randint(Ms[0],Ms[1]) for i in range(m)]
        PT.append(PT_i)
    agv_trans=[]
    agv1_trans = [random.randint(AGV1_speed[0],AGV1_speed[1]) for i in range(1,m)]
    agv2_trans=[random.randint(AGV2_speed[0],AGV2_speed[1]) for i in range(1,m)]
    agv_trans.extend([agv1_trans,agv2_trans])
    return PT ,agv_trans
n,m=5,5
agv_speed_pair=[0,0]
machine_speed=0
PT ,agv_trans=Generate(n,m,machine_speed,agv_speed_pair)
for i in range(2):
    agv_trans[i].append(0)
# print(np.array(PT))
# print()
# print(np.array(agv_trans))

4 simple_MADRL/brain.py


import os
from keras.models import Sequential, Model
from keras.layers import Dense, Lambda, Input, Concatenate
from keras.optimizers import *
import tensorflow as tf
from keras import backend as K

HUBER_LOSS_DELTA = 1.0


def huber_loss(y_true, y_predict):
    err = y_true - y_predict

    cond = K.abs(err) < HUBER_LOSS_DELTA
    L2 = 0.5 * K.square(err)
    L1 = HUBER_LOSS_DELTA * (K.abs(err) - 0.5 * HUBER_LOSS_DELTA)
    loss = tf.where(cond, L2, L1)

    return K.mean(loss)


class Brain(object):

    def __init__(self, args,brain_name):
        self.state_size = args.m
        self.action_size = args.m-1
        self.weight_backup = brain_name             #保存神经网络参数的地址
        self.batch_size = args.batch_size
        self.learning_rate = args.learning_rate
        self.test = args.test
        self.num_nodes = args.number_nodes
        self.dueling = args.dueling
        self.optimizer_model = args.optimizer
        self.model = self._build_model()
        self.model_ = self._build_model()

    def _build_model(self):

        if self.dueling:
            x = Input(shape=(self.state_size,))

            # a series of fully connected layer for estimating V(s)

            y11 = Dense(self.num_nodes, activation='relu')(x)
            y12 = Dense(self.num_nodes, activation='relu')(y11)
            y13 = Dense(1, activation="linear")(y12)

            # a series of fully connected layer for estimating A(s,a)

            y21 = Dense(self.num_nodes, activation='relu')(x)
            y22 = Dense(self.num_nodes, activation='relu')(y21)
            y23 = Dense(self.action_size, activation="linear")(y22)

            w = Concatenate(axis=-1)([y13, y23])

            # combine V(s) and A(s,a) to get Q(s,a)
            z = Lambda(lambda a: K.expand_dims(a[:, 0], axis=-1) + a[:, 1:] - K.mean(a[:, 1:], keepdims=True),
                       output_shape=(self.action_size,))(w)
        else:
            x = Input(shape=(self.state_size,))

            # a series of fully connected layer for estimating Q(s,a)

            y1 = Dense(self.num_nodes, activation='relu')(x)
            y2 = Dense(self.num_nodes, activation='relu')(y1)
            z = Dense(self.action_size, activation="linear")(y2)

        model = Model(inputs=x, outputs=z)

        if self.optimizer_model == 'Adam':
            optimizer = Adam(lr=self.learning_rate, clipnorm=1.)
        elif self.optimizer_model == 'RMSProp':
            optimizer = RMSprop(lr=self.learning_rate, clipnorm=1.)
        else:
            print('Invalid optimizer!')

        model.compile(loss=huber_loss, optimizer=optimizer)
        
        if self.test:
            if not os.path.isfile(self.weight_backup):
                print('Error:no file')
            else:
                model.load_weights(self.weight_backup)

        return model

    def train(self, x, y, sample_weight=None, epochs=1, verbose=0):  # x is the input to the network and y is the output

        self.model.fit(x, y, batch_size=len(x), sample_weight=sample_weight, epochs=epochs, verbose=verbose)

    def predict(self, state, target=False):
        if target:  # get prediction from target network
            return self.model_.predict(state)
        else:  # get prediction from local network
            return self.model.predict(state)

    def predict_one_sample(self, state, target=False):
        return self.predict(state.reshape(1,self.state_size), target=target).flatten()

    def update_target_model(self):
        self.model_.set_weights(self.model.get_weights())

    def save_model(self):
        self.model.save(self.weight_backup)

5 simple_MADRL/dqn_agent.py



import numpy as np
import random

from simple_MADRL.brain import Brain
from simple_MADRL.uniform_experience_replay import Memory as UER
from simple_MADRL.prioritized_experience_replay import Memory as PER

MAX_EPSILON = 1.0
MIN_EPSILON = 0.01

MIN_BETA = 0.4
MAX_BETA = 1.0


class Agent(object):
    
    epsilon = MAX_EPSILON
    beta = MIN_BETA

    def __init__(self, bee_index, brain_name, args):
        self.state_size = args.m
        self.action_size = args.m-1
        self.bee_index = bee_index
        self.learning_rate = args.learning_rate
        self.gamma = 0.95
        self.brain = Brain(args,brain_name)
        self.memory_model = args.memory

        if self.memory_model == 'UER':
            self.memory = UER(args.memory_capacity)

        elif self.memory_model == 'PER':
            self.memory = PER(args.memory_capacity, args.prioritization_scale)

        else:
            print('Invalid memory model!')

        self.target_type = args.target_type
        self.update_target_frequency = args.target_frequency
        self.max_exploration_step = args.maximum_exploration
        self.batch_size = args.batch_size
        self.step = 0
        self.test = args.test
        if self.test:
            self.epsilon = MIN_EPSILON

    def greedy_actor(self, state):
        if np.random.rand() <= self.epsilon:
            return random.randrange(self.action_size)
        else:
            return np.argmax(self.brain.predict_one_sample(state))

    def find_targets_per(self, batch):
        batch_len = len(batch)

        states = np.array([o[1][0] for o in batch])
        states_ = np.array([o[1][3] for o in batch])

        p = self.brain.predict(states)
        p_ = self.brain.predict(states_)
        pTarget_ = self.brain.predict(states_, target=True)

        x = np.zeros((batch_len, self.state_size))
        y = np.zeros((batch_len, self.action_size))
        errors = np.zeros(batch_len)

        for i in range(batch_len):
            o = batch[i][1]
            s = o[0]
            # a = o[1][self.bee_index]
            a = o[1]
            r = o[2]
            s_ = o[3]
            done = o[4]

            t = p[i]
            old_value = t[a]
            if done:
                t[a] = r
            else:
                if self.target_type == 'DDQN':
                    t[a] = r + self.gamma * pTarget_[i][np.argmax(p_[i])]
                elif self.target_type == 'DQN':
                    t[a] = r + self.gamma * np.amax(pTarget_[i])
                else:
                    print('Invalid type for target network!')

            x[i] = s
            y[i] = t
            errors[i] = np.abs(t[a] - old_value)

        return [x, y, errors]

    def find_targets_uer(self, batch):
        batch_len = len(batch)

        states = np.array([o[0] for o in batch])
        states_ = np.array([o[3] for o in batch])

        p = self.brain.predict(states)
        p_ = self.brain.predict(states_)
        pTarget_ = self.brain.predict(states_, target=True)

        x = np.zeros((batch_len, self.state_size))
        y = np.zeros((batch_len, self.action_size))
        errors = np.zeros(batch_len)

        for i in range(batch_len):
            o = batch[i]
            s = o[0]
            # a = o[1][self.bee_index]
            a = o[1]
            r = o[2]
            s_ = o[3]
            done = o[4]

            t = p[i]
            old_value = t[a]
            if done:
                t[a] = r
            else:
                if self.target_type == 'DDQN':
                    t[a] = r + self.gamma * pTarget_[i][np.argmax(p_[i])]
                elif self.target_type == 'DQN':
                    t[a] = r + self.gamma * np.amax(pTarget_[i])
                else:
                    print('Invalid type for target network!')

            x[i] = s
            y[i] = t
            errors[i] = np.abs(t[a] - old_value)

        return [x, y]

    def observe(self, sample):

        #普通经验回放
        if self.memory_model == 'UER':
            self.memory.remember(sample)

        # priority memory replay
        elif self.memory_model == 'PER':
            _, _, errors = self.find_targets_per([[0, sample]])
            self.memory.remember(sample, errors[0])

        else:
            print('Invalid memory model!')

    def decay_epsilon(self):
        # slowly decrease Epsilon based on our experience
        self.step += 1

        if self.test:
            self.epsilon = MIN_EPSILON
            self.beta = MAX_BETA
        else:
            if self.step < self.max_exploration_step:
                self.epsilon = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * (self.max_exploration_step - self.step)/self.max_exploration_step
                self.beta = MAX_BETA + (MIN_BETA - MAX_BETA) * (self.max_exploration_step - self.step)/self.max_exploration_step
            else:
                self.epsilon = MIN_EPSILON

    def replay(self):

        if self.memory_model == 'UER':
            batch = self.memory.sample(self.batch_size)
            x, y = self.find_targets_uer(batch)
            self.brain.train(x, y)

        elif self.memory_model == 'PER':
            [batch, batch_indices, batch_priorities] = self.memory.sample(self.batch_size)
            x, y, errors = self.find_targets_per(batch)

            normalized_batch_priorities = [float(i) / sum(batch_priorities) for i in batch_priorities]
            importance_sampling_weights = [(self.batch_size * i) ** (-1 * self.beta)
                                           for i in normalized_batch_priorities]
            normalized_importance_sampling_weights = [float(i) / max(importance_sampling_weights)
                                                      for i in importance_sampling_weights]
            sample_weights = [errors[i] * normalized_importance_sampling_weights[i] for i in range(len(errors))]

            self.brain.train(x, y, np.array(sample_weights))

            self.memory.update(batch_indices, errors)

        else:
            print('Invalid memory model!')

    def update_target_model(self):
        if self.step % self.update_target_frequency == 0:
            self.brain.update_target_model()

6 simple_MADRL/get_file_name.py

import os

ARG_LIST = ['learning_rate', 'optimizer', 'memory_capacity', 'batch_size', 'target_frequency', 'maximum_exploration',
             'first_step_memory', 'replay_steps', 'number_nodes', 'target_type', 'memory',
            'prioritization_scale']


def get_name_brain(args, idx):
    args=vars(args)

    file_name_str = '_'.join([str(args[x]) for x in ARG_LIST])

    return './results_agents_landmarks/weights_files/' + file_name_str + '_' + str(idx) + '.h5'

def get_name_rewards(args):
    args=vars(args)
    file_name_str = '_'.join([str(args[x]) for x in ARG_LIST])

    return './results_agents_landmarks/rewards_files/' + file_name_str + '.csv'

def get_name_timesteps(args):
    args=vars(args)
    file_name_str = '_'.join([str(args[x]) for x in ARG_LIST])

    return './results_agents_landmarks/timesteps_files/' + file_name_str + '.csv'

7 simple_MADRL/Params.py

import argparse
from Environment.Test1 import n,m,PT,agv_trans

parser = argparse.ArgumentParser()

#params for Flow_shop:
parser.add_argument('--n',default=n,type=int,help='Job number')
parser.add_argument('--m',default=m,type=int,help='Machine number')
parser.add_argument('--PT',default=PT,type=list,help='Processing time Matrix')
parser.add_argument('--agv_trans',default=agv_trans,type=list,help='AGV transport time bewteen machines')
parser.add_argument('--AGV_num',default=2,type=int,help='AGV number')

#params for Brain:
parser.add_argument( '--batch_size', default=64, type=int, help='Batch size')
parser.add_argument( '--learning_rate', default=0.00005, type=float, help='Learning rate')
parser.add_argument( '--number_nodes', default=256, type=int, help='Number of nodes in each layer of NN')
parser.add_argument( '--dueling', action='store_true', help='Enable Dueling architecture if "store_false" ')
parser.add_argument( '--optimizer', choices=['Adam', 'RMSProp'], default='RMSProp',
                    help='Optimization method')

#params for Agent:
parser.add_argument( '--memory', choices=['UER', 'PER'], default='PER')
parser.add_argument( '--memory_capacity', default=1000000, type=int, help='Memory capacity')
parser.add_argument( '--prioritization_scale', default=0.5, type=float, help='Scale for prioritization')
parser.add_argument( '--target_type', choices=['DQN', 'DDQN'], default='DDQN')
parser.add_argument( '--target_frequency', default=10000, type=int,
                    help='Number of steps between the updates of target network')
parser.add_argument( '--maximum_exploration', default=100000, type=int, help='Maximum exploration step')
parser.add_argument( '--test', action='store_true', help='Enable the test phase if "store_false"')
parser.add_argument( '--episode-number', default=5000, type=int, help='Number of episodes')
parser.add_argument('-fsm', '--first-step-memory', default=0, type=float,
                    help='Number of initial steps for just filling the memory')
parser.add_argument('-rs', '--replay-steps', default=4, type=float, help='Steps between updating the network')
parser.add_argument( '--render', action='store_false', help='Turn on visualization if "store_false"')
parser.add_argument('-re', '--recorder', action='store_true', help='Store the visualization as a movie '
                                                                   'if "store_false"')

args = parser.parse_args()

8 simple_MADRL/prioritized_experience_replay.py


import random
from simple_MADRL.sum_tree import SumTree as ST


class Memory(object):
    e = 0.05

    def __init__(self, capacity, pr_scale):
        self.capacity = capacity
        self.memory = ST(self.capacity)
        self.pr_scale = pr_scale
        self.max_pr = 0

    def get_priority(self, error):
        return (error + self.e) ** self.pr_scale

    def remember(self, sample, error):
        p = self.get_priority(error)

        self_max = max(self.max_pr, p)
        self.memory.add(self_max, sample)

    def sample(self, n):
        sample_batch = []
        sample_batch_indices = []
        sample_batch_priorities = []
        num_segments = self.memory.total() / n

        for i in range(n):
            left = num_segments * i
            right = num_segments * (i + 1)

            s = random.uniform(left, right)
            idx, pr, data = self.memory.get(s)
            sample_batch.append((idx, data))
            sample_batch_indices.append(idx)
            sample_batch_priorities.append(pr)

        return [sample_batch, sample_batch_indices, sample_batch_priorities]

    def update(self, batch_indices, errors):
        for i in range(len(batch_indices)):
            p = self.get_priority(errors[i])
            self.memory.update(batch_indices[i], p)

9 simple_MADRL/sum_tree.py

import numpy


class SumTree(object):

    def __init__(self, capacity):
        self.write = 0
        self.capacity = capacity
        self.tree = numpy.zeros(2*capacity - 1)
        self.data = numpy.zeros(capacity, dtype=object)

    def _propagate(self, idx, change):
        parent = (idx - 1) // 2

        self.tree[parent] += change

        if parent != 0:
            self._propagate(parent, change)

    def _retrieve(self, idx, s):
        left = 2 * idx + 1
        right = left + 1

        if left >= len(self.tree):
            return idx

        if s <= self.tree[left]:
            return self._retrieve(left, s)
        else:
            return self._retrieve(right, s-self.tree[left])

    def total(self):
        return self.tree[0]

    def add(self, p, data):
        idx = self.write + self.capacity - 1

        self.data[self.write] = data
        self.update(idx, p)

        self.write += 1
        if self.write >= self.capacity:
            self.write = 0

    def update(self, idx, p):
        change = p - self.tree[idx]

        self.tree[idx] = p
        self._propagate(idx, change)

    # def get_real_idx(self, data_idx):
    #
    #     tempIdx = data_idx - self.write
    #     if tempIdx >= 0:
    #         return tempIdx
    #     else:
    #         return tempIdx + self.capacity

    def get(self, s):
        idx = self._retrieve(0, s)
        dataIdx = idx - self.capacity + 1
        # realIdx = self.get_real_idx(dataIdx)

        return idx, self.tree[idx], self.data[dataIdx]

10 simpe_MADRL/simple_MARL_FSP_main.py


import numpy as np
import os
from simple_MADRL.dqn_agent import Agent
from Environment.Flow_Shop import Two_Robots_FS_Env
import matplotlib.pyplot as plt


class MAS:
    def __init__(self,args):
        current_path = os.path.dirname(__file__)
        self.env = Two_Robots_FS_Env(args)
        self.episodes_number = args.episode_number
        self.render = args.render  # Turn on visualization if "store_false"
        self.recorder = args.recorder
        self.test = args.test
        self.filling_steps = args.first_step_memory
        self.steps_b_updates = args.replay_steps


    def run(self, agents, file1, file2):
        from Environment.Gantt_graph import Gantt
        total_step=0
        rewards_list=[]
        time_list=[]
        time_step=0
        x=[]
        for i in range(self.episodes_number):
            # x.append(i)
            reward_all = 0
            t,state,done=self.env.reset1()
            state=np.array(state)
            while True:
                for j in range(len(agents)):
                    total_step+=1
                    a=agents[j].greedy_actor(state)
                    t[j],next_state,reward,done=self.env.scheduling(t[j],a,j)
                    next_state=np.array(next_state)
                    # if i >=1:
                    #     print(next_state)
                    agents[j].observe((state, a, reward, next_state, done))
                    reward_all+=reward
                    state=next_state
                    time_step+=1
                    if total_step >= self.filling_steps:
                        agents[j].decay_epsilon()
                        if time_step % self.steps_b_updates == 0:
                            agents[j].replay()
                        agents[j].update_target_model()
                    if done == True:
                        # Gantt(self.env.Machines, self.env.AGVs)
                        break
                if done==True:
                    break
                # Gantt(self.env.Machines, self.env.AGVs)
            if i%50==0:
                rewards_list.append(reward_all)
                x.append(i)
            time_list.append(t)

            print("Episode {p}, Score: {s}, Final Step: {t}, Goal: {g}".format(p=i, s=reward_all,
                                                                               t=t, g=done))
            # if not self.test:
            #     if i % 100 == 0:
            #         df = pd.DataFrame(rewards_list, columns=['score'])
            #         df.to_csv(file1)
            #
            #         df = pd.DataFrame(timesteps_list, columns=['steps'])
            #         df.to_csv(file2)
            #
            #         if total_step >= self.filling_steps:
            #             if reward_all > max_score:
            #                 for agent in agents:
            #                     agent.brain.save_model()
            #                 max_score = reward_all
        plt.plot(x,rewards_list)
        plt.show()
        Gantt(self.env.Machines, self.env.AGVs)


if __name__=="__main__":
    from Params import args
    from get_file_name import get_name_brain,get_name_rewards,get_name_timesteps

    env = MAS(args)
    all_agents = []
    for b_idx in range(2):
        brain_file = get_name_brain(args, b_idx)
        all_agents.append(Agent(b_idx, brain_file, args))

    rewards_file = get_name_rewards(args)
    timesteps_file = get_name_timesteps(args)

    env.run(all_agents, rewards_file, timesteps_file)

11 uniform_experience_replay.py

import random
from collections import deque


class Memory(object):

    def __init__(self, capacity):
        self.capacity = capacity
        self.memory = deque(maxlen=self.capacity)

    def remember(self, sample):
        self.memory.append(sample)

    def sample(self, n):
        n = min(n, len(self.memory))
        sample_batch = random.sample(self.memory, n)

        return sample_batch

实验效果:

Tensorflow2.0实现|用Python实现多智能体强化学习(MARL)求解两AGV流水车间联合(Two-AGV-FSP)调度问题_第1张图片

Tensorflow2.0实现|用Python实现多智能体强化学习(MARL)求解两AGV流水车间联合(Two-AGV-FSP)调度问题_第2张图片

你可能感兴趣的:(#,多智能体强化学习,#,强化学习,#,Python实现车间调度或论文,pytorch,深度学习,人工智能)