硬件环境:树莓派4B
软件环境:python3.8.10,ubuntu20.4,cmake3.10.3,opencv4.2.0
Paddlelite2.8(自己在ARM端编译)
1.系统环境准备
1.系统环境准备
刷ubuntu20.4镜像。
读卡器打开TF卡,直接添加txt文件,把文件名,后缀全删除,改成ssh。
用网线连接电脑,电脑网络设置共享
cmd 后用 arp-a 查看开发板的ip地址
用putty连接,登录,默认用户名ubuntu,密码Ubuntu
登陆后切换root用户:
sudo passwd root (设置root密码)
su root (切换root用户)
登录后:更换源。最好是先不换,等系统软件更新完再更换。实测清华源下载不如ubuntu官方快。
更换步骤:
sudo nano /etc/apt/sources.list
把所有的网站改成:
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports bionic main restricted
deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports bionic main restricted
……
升级软件,很慢,因为设置systemd,会突然后会断开ssh的连接。重连就好.
sudo apt update
sudo apt upgrade
下面开始安装桌面,安装桌面的时候,会出现依赖的问题,先安装aptitude,用aptitude能够自动安装所缺失的依赖:
sudo apt-get install aptitude
安装桌面:
sudo aptitude install xubuntu-desktop
如果中途ssh断开或者是没有下完:
sudo apt-get update –fix-missing
使用xrdp远程桌面连接操作树莓派,如果可以直接用树莓派连接显示器操作更好,就不需要这一步。
sudo apt-get install tightvncserver xrdp
安装完后,将xfce4-session写入到文件.xsession中:
echo xfce4-session >~/.xsession
修改/etc/xrdp/startwm.sh中
sudo nano /etc/xrdp/startwm.sh
在/etc/X11/Xsession上边一行添加xfce4-session修改配置文件 /etc/X11/Xsession
在文件最上面添加xfce4-session重新启动xrdp服务:
sudo service xrdp restart
然后我们就可以使用Windows的mstsc登录了,界面如下:
2.安装编译环境
2.安装编译环境
(1)编译环境准备:
1.安装工具,安装交叉编译环境,ubuntu20.4自带的python3.8.10:,按以下步骤安装:
sudo apt update
sudo apt-get install -y gcc g++ make wget python3.8 unzip patchelf python3.8-dev
sudo apt-get install -y g++-arm-linux-gnueabihf gcc-arm-linux-gnueabihf
2.安装python依赖项:
sudo apt-get install python3-pip
pip3 install --upgrade pip
sudo apt-get install patchelf
3.安装cmake:( 3.10 以上的版本支持较好)
wget https://www.cmake.org/files/v3.10/cmake-3.10.3.tar.gz
tar -zxvf cmake-3.10.3.tar.gz
cd cmake-3.10.3
./configure --prefix=/usr/local/cmake-3.1.0
make
sudo make install
查看cmake版本号: cmake –version: 表示cmake安装成功。
安装时可能出现的问题:
1.安装完成后没有cmake指令:
如果没有cmake指令:遵循下面步骤,很重要的一步:将cmake添加到系统的环境变量:
sudo vi /etc/profile
在末尾加入一行:
export PATH="$PATH:/usr/local/cmake-3.1.0/bin"
source /etc/profile
查看一下,PATH里已经有了:
echo $PATH
刚刚安装的cmake已被永久添加到系统PATH。
(2)编译安装paddle-lite的python Whl包:
下载paddle-lite源码,并切换分支,从gitee上下载,比较快,github也都一样。
git clone https://gitee.com/paddlepaddle/paddle-lite
cd paddle-lite
git checkout release/v2.8
删除此目录,编译脚本会自动从国内CDN下载第三方库文件:
rm –rf third-party
编译:
sudo
./lite/tools/build_linux.sh --with_python=ON --python_version=3.8 --with_cv=ON
编译时更多可以参考这篇文章:
https://blog.csdn.net/weixin_40973138/article/details/114780090
安装:
cd paddle-lite /build.lite.linux.armv8.gcc/inference_lite_lib.armlinux.armv8/python/install/dist
pip3 install xxxxxx.whl
编译,安装时可能出现的问题:
找不到python指令,没有python版本:因为ubuntu18.04默认安装了python2.7和python3.6.当系统中安装多个python版本时,输入python默认调用的是python2,这就需要我们把python3添加到环境变量:
echo alias python=python3 >> ~/.bashrc
更新环境变量:
source ~/.bashrc
sudo ln -s /usr/bin/python3 /usr/bin/python
(3).安装opencv:
(1)编译安装,参考下面文章:
https://www.pianshen.com/article/874994362/
(2)非编译安装:
sudo apt-get install libopencv-dev
sudo apt-get install python-opencv
3.运行官方demo
3.运行官方demo:
下载paddle-lite-demo:
直接在github或者gitee上下载paddle-lite-demo:
解压;
在此打开终端,下载demo的组件:
sh download_models_and_libs.sh
用安装版本的paddle-lite内核替换demo的paddle-lite:
在此界面进入paddle-lite:
另外打开root目录下的paddle-lite:
Paddle-lite/build.lite.linux.armv8.gcc/inference_lite_lib.armlinux.armv8/cxx
将include替换demo中paddle-lite中的include文件夹。
将lib内的libpaddle_light_api_share.so分别替换demo/paddle_lite/libs/armv7hf和/armv8中的同名文件。
进入/root/Paddle-Lite-Demo-master/Paddle-Lite-armlinux-demo/object_detection_demo.
打开object_detection_demo.cc修改:
复制下面代码替换源代码:
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include
#include "paddle_api.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
int WARMUP_COUNT = 0;
int REPEAT_COUNT = 1;
const int CPU_THREAD_NUM = 2;
const paddle::lite_api::PowerMode CPU_POWER_MODE =
paddle::lite_api::PowerMode::LITE_POWER_HIGH;
const std::vector INPUT_SHAPE = {1, 3, 300, 300};
const std::vector INPUT_MEAN = {0.5f, 0.5f, 0.5f};
const std::vector INPUT_STD = {0.5f, 0.5f, 0.5f};
const float SCORE_THRESHOLD = 0.5f;
struct RESULT {
std::string class_name;
float score;
float left;
float top;
float right;
float bottom;
};
inline int64_t get_current_us() {
struct timeval time;
gettimeofday(&time, NULL);
return 1000000LL * (int64_t)time.tv_sec + (int64_t)time.tv_usec;
}
std::vector load_labels(const std::string &path) {
std::ifstream file;
std::vector labels;
file.open(path);
while (file) {
std::string line;
std::getline(file, line);
labels.push_back(line);
}
file.clear();
file.close();
return labels;
}
void preprocess(cv::Mat &input_image, const std::vector &input_mean,
const std::vector &input_std, int input_width,
int input_height, float *input_data) {
cv::Mat resize_image;
cv::resize(input_image, resize_image, cv::Size(input_width, input_height), 0, 0);
if (resize_image.channels() == 4) {
cv::cvtColor(resize_image, resize_image, CV_BGRA2RGB);
}
cv::Mat norm_image;
resize_image.convertTo(norm_image, CV_32FC3, 1 / 255.f);
// NHWC->NCHW
int image_size = input_height * input_width;
const float *image_data = reinterpret_cast(norm_image.data);
float32x4_t vmean0 = vdupq_n_f32(input_mean[0]);
float32x4_t vmean1 = vdupq_n_f32(input_mean[1]);
float32x4_t vmean2 = vdupq_n_f32(input_mean[2]);
float32x4_t vscale0 = vdupq_n_f32(1.0f / input_std[0]);
float32x4_t vscale1 = vdupq_n_f32(1.0f / input_std[1]);
float32x4_t vscale2 = vdupq_n_f32(1.0f / input_std[2]);
float *input_data_c0 = input_data;
float *input_data_c1 = input_data + image_size;
float *input_data_c2 = input_data + image_size * 2;
int i = 0;
for (; i < image_size - 3; i += 4) {
float32x4x3_t vin3 = vld3q_f32(image_data);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(input_data_c0, vs0);
vst1q_f32(input_data_c1, vs1);
vst1q_f32(input_data_c2, vs2);
image_data += 12;
input_data_c0 += 4;
input_data_c1 += 4;
input_data_c2 += 4;
}
for (; i < image_size; i++) {
*(input_data_c0++) = (*(image_data++) - input_mean[0]) / input_std[0];
*(input_data_c1++) = (*(image_data++) - input_mean[1]) / input_std[1];
*(input_data_c2++) = (*(image_data++) - input_mean[2]) / input_std[2];
}
}
std::vector postprocess(const float *output_data, int64_t output_size,
const std::vector &word_labels,
const float score_threshold,
cv::Mat &output_image, double time) {
std::vector results;
std::vector colors = {
cv::Scalar(237, 189, 101), cv::Scalar(0, 0, 255), cv::Scalar(102, 153, 153),
cv::Scalar(255, 0, 0), cv::Scalar(9, 255, 0), cv::Scalar(0, 0, 0),
cv::Scalar(51, 153, 51)};
for (int64_t i = 0; i < output_size; i += 6) {
if (output_data[i + 1] < score_threshold) {
continue;
}
int class_id = static_cast(output_data[i]);
float score = output_data[i + 1];
RESULT result;
std::string class_name = "Unknown";
if (word_labels.size() > 0 && class_id >= 0 &&
class_id < word_labels.size()) {
class_name = word_labels[class_id];
}
result.class_name = class_name;
result.score = score;
result.left = output_data[i + 2];
result.top = output_data[i + 3];
result.right = output_data[i + 4];
result.bottom = output_data[i + 5];
int lx = static_cast(result.left * output_image.cols);
int ly = static_cast(result.top * output_image.rows);
int w = static_cast(result.right * output_image.cols) - lx;
int h = static_cast(result.bottom * output_image.rows) - ly;
cv::Rect bounding_box = cv::Rect(lx, ly, w, h) &
cv::Rect(0, 0, output_image.cols, output_image.rows);
if (w > 0 && h > 0 && score <= 1) {
cv::Scalar color = colors[results.size() % colors.size()];
cv::rectangle(output_image, bounding_box, color);
cv::rectangle(output_image, cv::Point2d(lx, ly), cv::Point2d(lx + w, ly - 10),
color, -1);
cv::putText(output_image,
std::to_string(results.size()) + "." + class_name + ":" +
std::to_string(score),
cv::Point2d(lx, ly), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255, 255, 255));
results.push_back(result);
}
}
return results;
}
cv::Mat process(cv::Mat &input_image,
std::vector &word_labels,
std::shared_ptr &predictor) {
// Preprocess image and fill the data of input tensor
std::unique_ptr input_tensor(
std::move(predictor->GetInput(0)));
input_tensor->Resize(INPUT_SHAPE);
int input_width = INPUT_SHAPE[3];
int input_height = INPUT_SHAPE[2];
auto *input_data = input_tensor->mutable_data();
double preprocess_start_time = get_current_us();
preprocess(input_image, INPUT_MEAN, INPUT_STD, input_width, input_height,
input_data);
double preprocess_end_time = get_current_us();
double preprocess_time = (preprocess_end_time - preprocess_start_time) / 1000.0f;
double prediction_time;
// Run predictor
// warm up to skip the first inference and get more stable time, remove it in
// actual products
for (int i = 0; i < WARMUP_COUNT; i++) {
predictor->Run();
}
// repeat to obtain the average time, set REPEAT_COUNT=1 in actual products
double max_time_cost = 0.0f;
double min_time_cost = std::numeric_limits::max();
double total_time_cost = 0.0f;
for (int i = 0; i < REPEAT_COUNT; i++) {
auto start = get_current_us();
predictor->Run();
auto end = get_current_us();
double cur_time_cost = (end - start) / 1000.0f;
if (cur_time_cost > max_time_cost) {
max_time_cost = cur_time_cost;
}
if (cur_time_cost < min_time_cost) {
min_time_cost = cur_time_cost;
}
total_time_cost += cur_time_cost;
prediction_time = total_time_cost / REPEAT_COUNT;
printf("iter %d cost: %f ms\n", i, cur_time_cost);
}
printf("warmup: %d repeat: %d, average: %f ms, max: %f ms, min: %f ms\n",
WARMUP_COUNT, REPEAT_COUNT, prediction_time,
max_time_cost, min_time_cost);
// Get the data of output tensor and postprocess to output detected objects
std::unique_ptr output_tensor(
std::move(predictor->GetOutput(0)));
const float *output_data = output_tensor->mutable_data();
int64_t output_size = 1;
for (auto dim : output_tensor->shape()) {
output_size *= dim;
}
cv::Mat output_image = input_image.clone();
double postprocess_start_time = get_current_us();
std::vector results = postprocess(
output_data, output_size, word_labels, SCORE_THRESHOLD, output_image, prediction_time);
double postprocess_end_time = get_current_us();
double postprocess_time = (postprocess_end_time - postprocess_start_time) / 1000.0f;
//printf("results: %d\n", results.size());
for (int i = 0; i < results.size(); i++) {
printf("[%d] %s - %f %f,%f,%f,%f\n", i, results[i].class_name.c_str(),
results[i].score, results[i].left, results[i].top, results[i].right,
results[i].bottom);
}
printf("Preprocess time: %f ms\n", preprocess_time);
printf("Prediction time: %f ms\n", prediction_time);
printf("Postprocess time: %f ms\n\n", postprocess_time);
return output_image;
}
int main(int argc, char **argv) {
if (argc < 3 || argc == 4) {
printf(
"Usage: \n"
"./object_detection_demo model_dir label_path [input_image_path] [output_image_path]"
"use images from camera if input_image_path and input_image_path isn't provided.");
return -1;
}
std::string model_path = argv[1];
std::string label_path = argv[2];
std::vector word_labels = load_labels(label_path);
paddle::lite_api::MobileConfig config;
config.set_model_from_file(model_path);
config.set_threads(CPU_THREAD_NUM);
config.set_power_mode(CPU_POWER_MODE);
std::shared_ptr predictor =
paddle::lite_api::CreatePaddlePredictor(config);
if (argc > 3) {
WARMUP_COUNT = 1;
REPEAT_COUNT = 5;
std::string input_image_path = argv[3];
std::string output_image_path = argv[4];
cv::Mat input_image = cv::imread(input_image_path);
cv::Mat output_image = process(input_image, word_labels, predictor);
cv::imwrite(output_image_path, output_image);
cv::imshow("Object Detection Demo", output_image);
cv::waitKey(0);
} else {
cv::VideoCapture cap(-1);
cap.set(cv::CAP_PROP_FRAME_WIDTH, 640);
cap.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
if (!cap.isOpened()) {
return -1;
}
while (1) {
cv::Mat input_image;
cap >> input_image;
cv::Mat output_image = process(input_image, word_labels, predictor);
cv::imshow("Object Detection Demo", output_image);
if (cv::waitKey(1) == char('q')) {
break;
}
}
cap.release();
cv::destroyAllWindows();
}
return 0;
}
在当前位置打开命令行:./run.sh
可以看到demo已经运行成功。
4.运行yolo模型
4.运行yolo模型:
1.用paddlelite自带的工具将模型转化为支持paddle-lite的.nb文件
paddle_lite_opt --model_file=./inference_model_yolo/__model__(__model__的路径)
--param_file=./inference_model_yolo/__params__(__params__的路径)
--valid_targets=arm
--optimize_out=yolo(模型名)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include
#include
#include
#include
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h" // NOLINT
/
// If this demo is linked to static library:libpaddle_api_light_bundled.a
// , you should include `paddle_use_ops.h` and `paddle_use_kernels.h` to
// avoid linking errors such as `unsupport ops or kernels`.
/
// #include "paddle_use_kernels.h" // NOLINT
// #include "paddle_use_ops.h" // NOLINT
using namespace paddle::lite_api; // NOLINT
using namespace std;
struct Object {
cv::Rect rec;
int class_id;
float prob;
};
int64_t ShapeProduction(const shape_t& shape) {
int64_t res = 1;
for (auto i : shape) res *= i;
return res;
}
const char* class_names[] = {"自己的分类"}; 记得修改
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
float* dout,
int size,
const std::vector mean,
const std::vector scale) {
if (mean.size() != 3 || scale.size() != 3) {
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
exit(1);
}
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);
float* dout_c0 = dout;
float* dout_c1 = dout + size;
float* dout_c2 = dout + size * 2;
int i = 0;
for (; i < size - 3; i += 4) {
float32x4x3_t vin3 = vld3q_f32(din);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(dout_c0, vs0);
vst1q_f32(dout_c1, vs1);
vst1q_f32(dout_c2, vs2);
din += 12;
dout_c0 += 4;
dout_c1 += 4;
dout_c2 += 4;
}
for (; i < size; i++) {
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c0++) = (*(din++) - mean[1]) * scale[1];
*(dout_c0++) = (*(din++) - mean[2]) * scale[2];
}
}
void pre_process(const cv::Mat& img, int width, int height, float* data) {
cv::Mat rgb_img;
//cv::cvtColor(resize_image, resize_image, CV_BGRA2RGB);
cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
cv::resize(
rgb_img, rgb_img, cv::Size(width, height), 0.f, 0.f, cv::INTER_CUBIC);
cv::Mat imgf;
rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
std::vector mean = {0.485f, 0.456f, 0.406f};
std::vector scale = {0.229f, 0.224f, 0.225f};
const float* dimg = reinterpret_cast(imgf.data);
neon_mean_scale(dimg, data, width * height, mean, scale);
}
std::vector
./run.sh运行即可。
可能出现的问题:
开发板运存不够,参考下面文章,增加交换内存: https://www.cnblogs.com/spjy/p/7085389.htmlutm_source=itdadao&utm_medium=referral#_caption_0