- 在 Conda 中删除环境及所有安装的库
Studying 开龙wu
conda
注意事项1.删除环境前确保你没有在该环境中运行任何程序。2.删除操作是不可逆的,所有该环境中的包和配置都会被永久删除。3.如果你想保留环境的配置信息,可以在删除前使用condaenvexport>environment.yml导出环境配置。关于requirements.txt和environment.yaml文件使用介绍详情可参考以往文章,争对机器学习和深度学习里Python项目开发管理项目依赖的
- 计算机毕业设计Python+uniapp校园兼职系统小程序(小程序+源码+LW)
Python毕设源码程序高学长
python课程设计uni-app
计算机毕业设计Python+uniapp校园兼职系统小程序(小程序+源码+LW)该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程项目运行环境配置:Pychram社区版+python3.7.7+Mysql5.7+uni+HBuilderX+listpip+Navicat11+Django+nodejs。项目技术:django+python+UNI等等组成,B/S模式+pychram管理
- Python-Django毕业设计养老院老人日常生活管理系统(程序+Lw)
Python计算机毕设程序源码_
pythondjango课程设计
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程项目运行环境配置:Pychram社区版+python3.7.7+Mysql5.7+HBuilderX+listpip+Navicat11+Django+nodejs。项目技术:django+python+Vue等等组成,B/S模式+pychram管理等等。环境需要1.运行环境:最好是python3.7.7,我们在这个版本上开发的。其他版
- Supervisor 入门指南一篇就够 —— 安装、项目配置与常见报错速查
逻极
python开发工具笔记python运维工具开发supervisor
Supervisor入门指南一篇就够——安装、项目配置与常见报错速查一、Supervisor是什么在服务器进程管理中,Supervisor是一款用Python编写的进程守护与管理工具。它的核心功能是将普通的命令行进程转变为后台daemon进程,并且在进程因意外情况退出时,能够自动将其重启,保证进程的持续运行。在实际应用中,它常出现在多层架构里。比如在Nginx→Gunicorn/Django→Su
- Python基础(字符串的切片与断言)
日暮凡尘
python开发语言pycharm
'''1.输入一个字符串,判断是否只包含英文字母(大写或小写)。输出True或False。2.输入一个字符串,统计里面数字字符(0-9)的数量。3.输入两个字符串,第一个是主串,第二个是要查找的字符,判断字符是否在主串中。4.输入一个字符串,将所有数字字符转换成整数后求和。5.统计字符串中空格的数量6.输入字符串和数字n,判断字符串是否只包含数字且长度等于n。7.验证用户输入的手机号格式(中国手机
- python 变量进阶(理解)
程序员同行者
变量进阶(理解)目标变量的引用可变和不可变类型局部变量和全局变量01.变量的引用变量和数据都是保存在内存中的在Python中函数的参数传递以及返回值都是靠引用传递的1.1引用的概念在Python中变量和数据是分开存储的数据保存在内存中的一个位置变量中保存着数据在内存中的地址变量中记录数据的地址,就叫做引用使用id()函数可以查看变量中保存数据所在的内存地址注意:如果变量已经被定义,当给一个变量赋值
- python——for_in循环
何处望天明CS
python
#Nico#时间:2021/4/2021:09#for-in循环'''in表达式从(字符串、序列等)中依次取值,又称为遍历for-in遍历的对象必须是可迭代对象''''''for-in的语法结构for自定义变量in可迭代对象:循环体'''#字符串中取值foritemin'python':print(item)#range产生一个整数序列,也是一个可迭代对象foriinrange(10):print
- 一步一步学Python3(小学生也适用) 第十七篇:循环语句for in循环
一、Pythonforin循环Pythonforin循环,是用来遍历任何数据序列,如一个列表,一个字符串,一个字典,一个元组等。forin循环的一般语法如下:foritemin序列:语句块else:语句块forin字符串:把每个字符循环出来'''字符串:把每个字符循环出来'''str1='老树Python''''把字符串str1元素进行循环,每循环出一个元素,就把该元素赋值给item'''fori
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- python 循环结构(for-in)
编程小僧
python基础
循环结构(for-in)说明:也是循环结构的一种,经常用于遍历字符串、列表,元组,字典等格式:forxiny:循环体执行流程:x依次表示y中的一个元素,遍历完所有元素循环结束示例1:遍历字符串s='Iloveyoumorethanicansay'foriins:print(i)示例2:遍历列表l=['鹅鹅鹅','曲项向天歌','锄禾日当午','春种一粒粟']foriinl:print(i)#可以
- Python学习笔记
cherishSpring
pythonpython学习笔记
目录一、名词解释二、数据类型(变量名无类型,变量值有类型)三、数据类型转换(万物皆可转字符串)四、标识符五、运算符六、字符串扩展七、数据输入八、if语句九、while语句十、for循环语句十一、函数十二、数据容器1、List列表2、tuple元组3、字符串4、序列的常用操作-切片5、set集合6、dict字典7、数据容器相互转换8、通用操作十三、文件编码一、名词解释1、字面量被写在代码中的固定的值
- Python for循环
dengdieli5313
python
Pythonfor循环可以遍历任何序列的项目,如一个列表或者一个字符串。for循环的语法结构如下:foriterating_varinsequence:statements(s)最简单的形式如下,循环10次。1foriinrange(10):2print("loop:",i)输出为1loop:02loop:13loop:24loop:35loop:46loop:57loop:68loop:79lo
- python的for-in循环
小白L.
入门pythonnumpy开发语言
‘’‘for-in循环in表达从(字符串序列)中依次取值,又称为遍历for-in遍历的对象必须是可迭代对象for-in的语法结构for自定义的变量in可迭代对象:循环体循环体内不需要访问自定义变量,可以将自定义变量替代为下划线’‘’#第一次取出来的是P,将P赋值item,将item的值输出foritemin'python':print(item)#range()产生一个整数序列,–》也是一个可迭代
- Python-for-in循环
難釋懷
pythonwindows服务器
一、前言在Python编程中,循环结构(LoopStructure)是程序控制流的重要组成部分。其中,for...in循环是Python中最常用、最简洁的迭代工具之一。与传统的C风格语言中的for不同,Python的for...in循环专门用于遍历可迭代对象(Iterable),如列表、元组、字符串、字典、集合,甚至是生成器等。本文将带你深入了解:for...in循环的基本语法;如何高效地遍历各种
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- [论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制
王莽v2
机器人神经网络神经网络算法控制器
[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制摘要本文研究了在水平面内运动的全驱动自主水下机器人的轨迹跟踪问题。在我们的控制设计中考虑了外部干扰、控制输入非线性和模型不确定性。基于离散时间域的动力学模型,两个神经网络(包括一个临界神经网络和一个作用神经网络)被集成到我们的自适应控制设计中。引入临界神经网络来评价设计的控制器在当前时间步长内的长期性能,并利用作用神经网络来补偿未知动
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- Python设计模式:适配模式
niuguangshuo
python基础python设计模式开发语言
1.适配模式(AdapterPattern)详解适配模式(AdapterPattern)是一种结构型设计模式,它允许将一个类的接口转换成客户端所期望的另一种接口。适配模式使得原本由于接口不兼容而无法一起工作的类可以协同工作。换句话说,适配模式充当了一个桥梁,允许不同接口的类之间进行交互。在软件开发中,常常会遇到需要使用现有类的情况,但这些类的接口与我们需要的接口不匹配。适配模式提供了一种解决方案,
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- 数字图像处理(三:图像如果当作矩阵,那加减乘除处理了矩阵,那图像咋变):从LED冬奥会、奥运会及春晚等等大屏,到手机小屏,快来挖一挖里面都有什么
数字图像处理(三)一、(准备工作:咋玩,用什么玩具)图像以矩阵形式存储,那矩阵一变、图像立刻跟着变?1.Python+JupyterNotebook/Lab+库(NumPy,OpenCV,Matplotlib,scikit-image)2.MATLAB+ImageProcessingToolbox3.JavaScript+HTML5Canvas+浏览器4.专业的图像处理软件(带脚本/插件功能)二、
- 使用Python进行文件属性修改
python自动化工具
python办公自动化python服务器java
哈喽,大家好,我是木头左!在计算机中,文件属性是指与文件相关的元数据,如创建时间、修改时间、访问时间等。这些属性对于管理和组织文件非常重要。Python提供了一些内置的函数和方法,可以方便地修改文件的属性。本文将介绍如何使用Python进行文件属性的修改。1.获取文件属性需要使用os模块中的stat()函数来获取文件的属性。该函数返回一个包含文件属性的命名元组。以下是一个简单的示例:importo
- Python 代理模式:控制对象访问的智能中介
在Python编程中,代理模式(ProxyPattern)是一种非常有用的设计模式,它在许多场景下能够为我们提供更加灵活和可控的对象访问方式。代理模式就像是一个中间人,它站在客户端和真实对象之间,代替真实对象处理请求,并且可以在这个过程中添加额外的逻辑,如权限验证、懒加载等。本文将深入探讨Python中的代理模式,详细阐述其概念、关键要点、实现方式、应用场景以及与其他相关模式的比较。一、代理模式的
- 深度解析股票量化标准,从数据筛选到模型构建全面解读
股票程序化交易接口
量化交易股票API接口Python股票量化交易股票量化标准数据筛选模型构建量化分析股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>股票量化标准的定义股票量化标准是一套运用数学和统计学方法,对股票投资进行系统性分析与决策的准则。它将各种影响股票价格的因素,如财务数据、市场交易数据等进行量化处理。通过这些量化后的指标,投资者能更精准地评估股票的价值与潜力,减少主观判
- 睡岗离岗检测算法 Python
燧机科技SuiJi
人工智能python算法深度学习神经网络
睡岗离岗检测算法的核心在于实时监控和智能分析,睡岗离岗检测算法通过安装在关键区域的监控摄像头,系统能够捕捉到员工的活动画面。当系统检测到人体位置长时间未发生变化时,将启动睡姿分类器。该分类器能够识别多种睡姿,如趴在桌子上睡、坐在凳子上后仰睡等。一旦识别为睡姿,系统将立即触发告警机制。这可以通过向管理人员发送警报信号,或通过语音提醒员工的方式实现。睡岗离岗检测算法在多种场景下均有广泛应用。该算法能够
- Python桌面版数独(二版)-增加4X4、6X6
香蕉可乐荷包蛋
#数独pythonjava前端
增加选择4x4、6x6模式,以下是三种模式的不同解析:4x4模式:数独大小:4x4每个宫格大小:2x2数字范围:1-46x6模式:数独大小:6x6每个宫格大小:2x3数字范围:1-69x9模式:数独大小:9x9每个宫格大小:3x3数字范围:1-9主要优化点:4.添加了模式选择下拉框,可以选择4x4、6x6、9x9模式5.根据选择的模式动态创建不同大小的棋盘6.生成不同大小的数独题目7.验证输入的合
- AI新纪元:2025年深度学习技术突破与行业应用全景
像素笔记
杂谈人工智能深度学习ai自动驾驶工业数字化转型未来趋势技术创新
2025年,人工智能技术迎来爆发式增长,大模型、生成式AI和多模态技术持续突破,人形机器人量产元年正式开启,自动驾驶商业化进程加速,工业数字化转型全面铺开。这些进展不仅重塑了技术边界,更在多个行业创造了实际价值,推动AI从实验室走向产业化。本文将深入剖析2025年深度学习与AI领域的核心技术突破、行业应用案例及未来发展趋势,为技术从业者提供全面视角。一、深度学习核心技术突破:大模型、生成式AI与多
- 变型桥——桥接模式详解(Python实现)
引言在上一篇文章中,我们详细介绍了适配器模式(AdapterPattern),并展示了如何通过适配器将不兼容的接口转换为兼容的接口,使得原本无法协同工作的类能够在一起工作。这次,我们将探讨另一种结构性设计模式——桥接模式(BridgePattern),或者我们可以亲切地称它为“变型桥”。桥接模式将抽象部分与它的实现部分分离,使它们都可以独立地变化,通过引入一个桥接接口,桥接模式可以让抽象和实现独立
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不