手写数字识别:Python+BP神经网络

【仅作娱乐】

  • 1.简述
  • 2.环境配置【重要!!!】
  • 3.文件目录
  • 4.主程序
  • 5.神经网络定义
  • 5.神经网络训练
  • 6.识别算法
  • 7.画板
  • 8.交互界面
  • 8.效果展示

1.简述

编程语言:Python3
界面设计:PyQt5
识别方法:BP神经网络
训练数据:Mnist训练集
手写数字获取:画图板

2.环境配置【重要!!!】

【重要的事情说三遍!!!】
库的的版本必须如下所列,否则点击识别按钮后程序将异常退出!
库的的版本必须如下所列,否则点击识别按钮后程序将异常退出!
库的的版本必须如下所列,否则点击识别按钮后程序将异常退出!

Python版本3.6.3
相关库及版本

Package Version
numpy 1.12.0
Pillow 4.2.0
PyQt5 5.11.3
PyQt5-sip 4.19.19
PyQt5-stubs 5.11.3.0
sip 4.19.8

3.文件目录

项目文件列表:

文件/文件夹 用途
Mnist文件夹 手写数字训练集
Resource文件夹 界面设计相关图像
tmp文件夹 图像处理临时文件
bp_train.py 神经网络训练
Main.py 主程序
MainWidget.py 交互界面
NN.py 神经网络定义
PaintBoard.py 画板
recognize.py 识别算法
weights.npy 权重

4.主程序

main.py

from MainWidget import MainWidget
from PyQt5.QtWidgets import QApplication
from PyQt5.Qt import *
import sys

def main():
    app = QApplication(sys.argv)
    app.setWindowIcon(QIcon('./Resource/icon/xmf.ico'))
    mainWidget = MainWidget()  # 新建一个主界面
    mainWidget.show()  # 显示主界面

    exit(app.exec_())  # 进入消息循环

if __name__ == '__main__':
    main()

5.神经网络定义

NN.py

import numpy as np

def LabelBinarizer(label):
    relabel=np.zeros([len(label),10],dtype=np.int32)
    for i in range(len(label)):
        relabel[i][label[i]]=1
    return relabel

def tanh(x):
    return np.tanh(x)

def tanh_deriv(x):
    return 1.0 - np.tanh(x)*np.tanh(x)

def logistic(x):
    return 1/(1 + np.exp(-x))

def logistic_derivative(x):
    return logistic(x)*(1-logistic(x))

class NeuralNetwork:
    def __init__(self, layers, activation='tanh'):
 
        if activation == 'logistic':
            self.activation = logistic
            self.activation_deriv = logistic_derivative
        elif activation == 'tanh':
            self.activation = tanh
            self.activation_deriv = tanh_deriv

        self.weights = []
        for i in range(1, len(layers) - 1):
            self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
            self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)

    def fit(self, X, y, learning_rate=0.15, epochs=60000):
        X = np.atleast_2d(X)
        temp = np.ones([X.shape[0], X.shape[1]+1])
        temp[:, 0:-1] = X  
        X = temp
        y = np.array(y)

        for k in range(epochs):
            print(k+1)
            i = np.random.randint(X.shape[0])
            a = [X[i]]

            for l in range(len(self.weights)):  
                a.append(self.activation(np.dot(a[l], self.weights[l])))  
            error = y[i] - a[-1]  
            deltas = [error * self.activation_deriv(a[-1])] 
            
            for l in range(len(a) - 2, 0, -1): 
                deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
            deltas.reverse()
            for i in range(len(self.weights)):
                layer = np.atleast_2d(a[i])
                delta = np.atleast_2d(deltas[i])
                self.weights[i] += learning_rate * layer.T.dot(delta)
        np.save("weights",self.weights)

    def predict(self, x):
        self.weights=np.load("weights.npy")
        x = np.array(x)
        temp = np.ones(x.shape[0]+1)
        temp[0:-1] = x
        a = temp
        for l in range(0, len(self.weights)):
            a = self.activation(np.dot(a, self.weights[l]))
        return a

fit:定义训练函数
predict:定义识别函数

5.神经网络训练

bp_train.py

import struct
from NN import *

# 训练集读取函数
def load_minist(labels_path,images_path):
    with open(labels_path,'rb') as lbpath:
        magic,n =struct.unpack('>II',lbpath.read(8))
        labels=np.fromfile(lbpath,dtype=np.uint8)

    with open(images_path,"rb")as imgpath:
        magic,num,rows,cols=struct.unpack('>IIII',imgpath.read(16))
        images=np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels),784)
    return images,labels
# 读取训练集图像与标签
images,labels=load_minist('./Mnist/train-labels.idx1-ubyte','./Mnist/train-images.idx3-ubyte')
# 读取测试集图像与标签
test_images,test_labels=load_minist('./Mnist/t10k-labels.idx1-ubyte','./Mnist/t10k-images.idx3-ubyte')

labels = LabelBinarizer(labels)
# 实例化BP神经网络
nn = NeuralNetwork([784,250,10], 'logistic')
# 开始训练
nn.fit(images,labels)

6.识别算法

recognize.py

from PIL import Image
from NN import *

def Normalization(dataset):
    temp=dataset-np.tile(dataset.min(),dataset.shape)
    maxmatrix=np.tile(temp.max(),dataset.shape)
    return temp/maxmatrix

def rgb2gray(rgb):
    return np.dot(rgb[...,:3],[0.299,0.587,0.114])

def getimage_array(filename):
    img = Image.open(filename)
    img_array = np.array(img)
    if img_array.ndim==3:
        img_array = rgb2gray(img_array)
    img_array = img_array.flatten()
    img_array = 1 - Normalization(img_array)
    return img_array

def JudgeEdge(img_array):
    height = len(img_array)
    width = len(img_array[0])
    size = [-1, -1, -1, -1]
    for i in range(height):
        high = img_array[i]
        low = img_array[height - 1 - i]
        if len(high[high > 0]) > 0 and size[0]==-1:
            size[0] = i
        if len(low[low > 0]) > 0 and size[1]==-1:
            size[1] = height - 1 - i
        if size[1] != -1 and size[0] != -1:
            break
    for i in range(width):
        left = img_array[:, i]
        right = img_array[:, width - 1 - i]
        if len(left[left > 0]) > 0 and size[2]==-1:
            size[2] = i
        if len(right[right > 0]) > 0 and size[3]==-1:
            size[3] = width - i - 1
        if size[2] != -1 and size[3] != -1:
            break
    return size

def JudgeOneNumber(img_array):
    edge=[-1,-1]
    width=len(img_array[0])
    for i in range(width):
        left = img_array[:, i]
        right = img_array[:, width - 1 - i]
        if len(left[left > 0]) > 0 and edge[0]==-1:
            edge[0] = i
        if len(right[right > 0]) > 0 and edge[1]==-1:
            edge[1] = width - i - 1
        if edge[0] != -1 and edge[1] != -1:
            break
    for j in range(edge[0],edge[1]+1):
        border=img_array[:,j]
        if len(border[border>0])==0:
            return False
    return True

def SplitPicture(img_array,img_list):
    if JudgeOneNumber(img_array):
        img_list.append(img_array)
        return img_list
    width=len(img_array[0])
    for i in range(width):
        left_border=img_array[:,i]
        right_border=img_array[:,i+1]
        if len(left_border[left_border>0])>0 and len(right_border[right_border>0])==0:
            break
    return_array=img_array[:,0:i+1]
    img_list.append(return_array)
    new_array=img_array[:,i+1:]
    return SplitPicture(new_array,img_list)

#读取图片,包括图片灰度化、剪裁、压缩
def GetCutZip(imagename):
    img = Image.open(imagename)
    img_array = np.array(img)
    #RGB图灰度化
    if img_array.ndim == 3:
        img_array = rgb2gray(img_array)

    #提高数字与背景的对比度
    img_array=Normalization(img_array)
    #白底黑字图像转化为黑底白字
    arr1=(img_array>=0.9)
    arr0=(img_array<=0.1)
    if arr1.sum()> arr0.sum():
        img_array = 1 - img_array

    img = Image.fromarray(np.uint8(img_array))
    #消除部分噪音,便于提取数字
    img_array[img_array>0.7]=1
    img_array[img_array<0.4]=0
    img_list = SplitPicture(img_array, [])
    final_list=[]
    for img_array in img_list:
        edge = JudgeEdge(img_array)
        cut_array = img_array[edge[0]:edge[1] + 1, edge[2]:edge[3] + 1]
        cut_img = Image.fromarray(np.uint8(cut_array * 255))
        if cut_img.size[0]<=cut_img.size[1]:
            zip_img = cut_img.resize((20 * cut_img.size[0] // cut_img.size[1], 20), Image.ANTIALIAS)
        else:
            zip_img =cut_img.resize((20,20*cut_img.size[1]//cut_img.size[0]),Image.ANTIALIAS)
        zip_img_array = np.array(zip_img)
        final_array = np.zeros((28, 28))
        height = len(zip_img_array)
        width = len(zip_img_array[0])
        high = (28 - height) // 2
        left = (28 - width) // 2
        final_array[high:high + height, left:left + width] = zip_img_array
        final_array=Normalization(final_array)
        final_list.append(final_array)
        
    return final_list

def recognize(src):
    nn = NeuralNetwork([784,250,10], 'logistic')
    img_list=GetCutZip(src)
    final_result=''
    for img_array in img_list:
        img_array=img_array.flatten()
        result_list=nn.predict(img_array)
        result=np.argmax(result_list)
        final_result=final_result+str(result)
    return final_result

if __name__=="__main__":
    img_path = input("请输入图片路径:\n")
    final_result = recognize(img_path)
    print("识别的最终结果是:"+final_result)

7.画板

PaintBoard.py

from PyQt5.QtWidgets import QWidget
from PyQt5.Qt import QPixmap, QPainter, QPoint, QPaintEvent, QMouseEvent, QPen, \
    QColor, QSize
from PyQt5.QtCore import Qt


class PaintBoard(QWidget):

    def __init__(self, Parent=None):
        '''
        Constructor
        '''
        super().__init__(Parent)

        self.__InitData()  # 先初始化数据,再初始化界面
        self.__InitView()
    def __InitData(self):

        self.__size = QSize(480, 460)

        # 新建QPixmap作为画板,尺寸为__size
        self.__board = QPixmap(self.__size)
        self.__board.fill(Qt.white)  # 用白色填充画板

        self.__IsEmpty = True  # 默认为空画板
        self.EraserMode = False  # 默认为禁用橡皮擦模式

        self.__lastPos = QPoint(0, 0)  # 上一次鼠标位置
        self.__currentPos = QPoint(0, 0)  # 当前的鼠标位置

        self.__painter = QPainter()  # 新建绘图工具

        self.__thickness = 10  # 默认画笔粗细为10px
        self.__penColor = QColor("black")  # 设置默认画笔颜色为黑色
        self.__colorList = QColor.colorNames()  # 获取颜色列表

    def __InitView(self):
        # 设置界面的尺寸为__size
        self.setFixedSize(self.__size)

    def Clear(self):
        # 清空画板
        self.__board.fill(Qt.white)
        self.update()
        self.__IsEmpty = True

    def ChangePenColor(self, color="black"):
        # 改变画笔颜色
        self.__penColor = QColor(color)

    def ChangePenThickness(self, thickness=10):
        # 改变画笔粗细
        self.__thickness = thickness

    def IsEmpty(self):
        # 返回画板是否为空
        return self.__IsEmpty

    def GetContentAsQImage(self):
        # 获取画板内容(返回QImage)
        image = self.__board.toImage()
        return image

    def paintEvent(self, paintEvent):
        # 绘图事件
        # 绘图时必须使用QPainter的实例,此处为__painter
        # 绘图在begin()函数与end()函数间进行
        # begin(param)的参数要指定绘图设备,即把图画在哪里
        # drawPixmap用于绘制QPixmap类型的对象
        self.__painter.begin(self)
        # 0,0为绘图的左上角起点的坐标,__board即要绘制的图
        self.__painter.drawPixmap(0, 0, self.__board)
        self.__painter.end()

    def mousePressEvent(self, mouseEvent):
        # 鼠标按下时,获取鼠标的当前位置保存为上一次位置
        self.__currentPos = mouseEvent.pos()
        self.__lastPos = self.__currentPos

    def mouseMoveEvent(self, mouseEvent):
        # 鼠标移动时,更新当前位置,并在上一个位置和当前位置间画线
        self.__currentPos = mouseEvent.pos()
        self.__painter.begin(self.__board)

        if self.EraserMode == False:
            # 非橡皮擦模式
            self.__painter.setPen(QPen(self.__penColor, self.__thickness))  # 设置画笔颜色,粗细
        else:
            # 橡皮擦模式下画笔为纯白色,粗细为10
            self.__painter.setPen(QPen(Qt.white, 10))

        # 画线
        self.__painter.drawLine(self.__lastPos, self.__currentPos)
        self.__painter.end()
        self.__lastPos = self.__currentPos

        self.update()  # 更新显示

    def mouseReleaseEvent(self, mouseEvent):
        self.__IsEmpty = False  # 画板不再为空

8.交互界面

MainWidget.py

from PyQt5.Qt import *
from PyQt5.QtWidgets import QHBoxLayout, QVBoxLayout, QPushButton, QSplitter, \
    QComboBox, QLabel, QSpinBox, QFileDialog
from PaintBoard import PaintBoard

from recognize import recognize

class MainWidget(QWidget):

    def __init__(self, Parent=None):

        super().__init__(Parent)

        self.__InitData()  # 先初始化数据,再初始化界面
        self.__InitView()

    def __InitData(self):
        '''
                  初始化成员变量
        '''
        self.__paintBoard = PaintBoard(self)
        # 获取颜色列表(字符串类型)
        self.__colorList = QColor.colorNames()

    def __InitView(self):
        '''
                  初始化界面
        '''
        self.setFixedSize(640, 480)
        self.setWindowTitle("手写数字识别系统")

        # 新建一个水平布局作为本窗体的主布局
        main_layout = QHBoxLayout(self)
        # 设置主布局内边距以及控件间距为10px
        main_layout.setSpacing(10)

        # 在主界面左侧放置画板
        main_layout.addWidget(self.__paintBoard)

        # 新建垂直子布局用于放置按键
        sub_layout = QVBoxLayout()

        # 设置此子布局和内部控件的间距为10px
        sub_layout.setContentsMargins(10, 10, 10, 10)

        self.__label_School = QLabel(self)
        self.__label_School.setText("踏雪寻梅")
        self.__label_School.setAlignment(Qt.AlignCenter)
        self.__label_School.setFont(QFont("楷体", 12, QFont.Bold))
        sub_layout.addWidget(self.__label_School)

        self.__label_faculty = QLabel(self)
        self.__label_faculty.setText("张熤")
        self.__label_faculty.setAlignment(Qt.AlignCenter)
        self.__label_faculty.setFont(QFont("楷体", 12, QFont.Bold))
        sub_layout.addWidget(self.__label_faculty)

        self.__label_Name = QLabel(self)
        self.__label_Name.setText("(〃'▽'〃)")
        self.__label_Name.setAlignment(Qt.AlignCenter)
        self.__label_Name.setFont(QFont("楷体", 12, QFont.Bold))
        sub_layout.addWidget(self.__label_Name)

        splitter = QSplitter(self)  # 占位符
        sub_layout.addWidget(splitter)

        self.__btn_Clear = QPushButton("清空画板")
        self.__btn_Clear.setParent(self)  # 设置父对象为本界面

        # 将按键按下信号与画板清空函数相关联
        self.__btn_Clear.clicked.connect(self.__paintBoard.Clear)
        sub_layout.addWidget(self.__btn_Clear)

        self.__btn_Quit = QPushButton("退出")
        self.__btn_Quit.setParent(self)  # 设置父对象为本界面
        self.__btn_Quit.clicked.connect(self.Quit)
        sub_layout.addWidget(self.__btn_Quit)

        self.__btn_Save = QPushButton("保存作品")
        self.__btn_Save.setParent(self)
        self.__btn_Save.clicked.connect(self.on_btn_Save_Clicked)
        sub_layout.addWidget(self.__btn_Save)

        self.__cbtn_Eraser = QCheckBox("  使用橡皮擦")
        self.__cbtn_Eraser.setParent(self)
        self.__cbtn_Eraser.clicked.connect(self.on_cbtn_Eraser_clicked)
        sub_layout.addWidget(self.__cbtn_Eraser)

        self.__btn_Recognize = QPushButton("识别")
        self.__btn_Recognize.setParent(self)  # 设置父对象为本界面
        self.__btn_Recognize.clicked.connect(self.on_recognize_clicked)
        sub_layout.addWidget(self.__btn_Recognize)

        self.__label_result = QLabel(self)
        self.__label_result.setText("识别结果:")
        sub_layout.addWidget(self.__label_result)

        self.__label_rec_result = QLabel('',self)
        self.__label_rec_result.setAlignment(Qt.AlignCenter)
        self.__label_rec_result.setFont(QFont("Roman times", 18, QFont.Bold))
        self.__label_rec_result.setStyleSheet("color:red")
        sub_layout.addWidget(self.__label_rec_result)

        splitter = QSplitter(self)  # 占位符
        sub_layout.addWidget(splitter)

        self.__label_penThickness = QLabel(self)
        self.__label_penThickness.setText("画笔粗细")
        self.__label_penThickness.setFixedHeight(20)
        sub_layout.addWidget(self.__label_penThickness)

        self.__spinBox_penThickness = QSpinBox(self)
        self.__spinBox_penThickness.setMaximum(20)
        self.__spinBox_penThickness.setMinimum(2)
        self.__spinBox_penThickness.setValue(10)  # 默认粗细为10
        self.__spinBox_penThickness.setSingleStep(2)  # 最小变化值为2
        self.__spinBox_penThickness.valueChanged.connect(
            self.on_PenThicknessChange)  # 关联spinBox值变化信号和函数on_PenThicknessChange
        sub_layout.addWidget(self.__spinBox_penThickness)

        self.__label_penColor = QLabel(self)
        self.__label_penColor.setText("画笔颜色")
        self.__label_penColor.setFixedHeight(20)
        sub_layout.addWidget(self.__label_penColor)

        self.__comboBox_penColor = QComboBox(self)
        self.__fillColorList(self.__comboBox_penColor)  # 用各种颜色填充下拉列表
        self.__comboBox_penColor.currentIndexChanged.connect(self.on_PenColorChange)  # 关联下拉列表的当前索引变更信号与函数on_PenColorChange
        sub_layout.addWidget(self.__comboBox_penColor)

        main_layout.addLayout(sub_layout)  # 将子布局加入主布局


    def __fillColorList(self, comboBox):
        index_black = 0
        index = 0
        for color in self.__colorList:
            if color == "black":
                index_black = index
            index += 1
            pix = QPixmap(70, 20)
            pix.fill(QColor(color))
            comboBox.addItem(QIcon(pix), None)
            comboBox.setIconSize(QSize(70, 20))
            comboBox.setSizeAdjustPolicy(QComboBox.AdjustToContents)

        comboBox.setCurrentIndex(index_black)


    def on_PenColorChange(self):
        color_index = self.__comboBox_penColor.currentIndex()
        color_str = self.__colorList[color_index]
        self.__paintBoard.ChangePenColor(color_str)


    def on_PenThicknessChange(self):
        penThickness = self.__spinBox_penThickness.value()
        self.__paintBoard.ChangePenThickness(penThickness)


    def on_btn_Save_Clicked(self):
        savePath = QFileDialog.getSaveFileName(self, 'Save Your Paint', '.\\', '*.png')
        print(savePath)
        if savePath[0] == "":
            print("Save cancel")
            return
        image = self.__paintBoard.GetContentAsQImage()
        image.save(savePath[0])


    def on_cbtn_Eraser_clicked(self):
        if self.__cbtn_Eraser.isChecked():
            self.__paintBoard.EraserMode = True  # 进入橡皮擦模式
        else:
            self.__paintBoard.EraserMode = False  # 退出橡皮擦模式

    def on_recognize_clicked(self):
        savePath = './tmp/image.png'
        image = self.__paintBoard.GetContentAsQImage()
        image.save(savePath)
        print(savePath)

        predict = recognize(savePath)
        print(predict)
        self.__label_rec_result.setText(predict)

    def Quit(self):
        self.close()

8.效果展示

手写数字识别:Python+BP神经网络_第1张图片
(`・ω・´) →项目文件已上传…

你可能感兴趣的:(手写数字识别,python,图像识别,qt5,神经网络,机器学习)