前言:
在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。本文的目的就是对常用的相似性度量作一个总结。
1.定义:
欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。
2.计算公式:
3.代码实现:
import math
def euclidean(x, y):
d = 0
for xi, yi in zip(x, y):
d += (xi-yi)**2
return math.sqrt(d)
import numpy as np
np.linalg(vector1-vector2, ord=2)
4.适用的数据分析模型
欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异;
1.定义:
顾名思义,在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。
2.计算公式
3.代码实现
import numpy as np
np.linalg(vector1-vector2, ord=1)
4.适用的数据分析模型
欧几里得距离无法忽略指标度量的差异,所以在使用欧氏距离之前需要对底层指标进行数据的标准化,而基于各指标维度进行标准化后再使用欧氏距离就衍生出来另外一个距离度量——马哈拉诺比斯距离(Mahalanobis Distance),简称马氏距离。
1.定义
国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?你会发现最少步数总是max(| x2-x1| , |y2-y1| ) 步。有一种类似的一种距离度量方法叫切比雪夫距离(L∞范数)。
2.计算公式
公式的另一种等价形式是:可以使用放缩法和夹逼法则来证明。
3.代码实现
import numpy as np
np.linalg.norm(vector1-vector2,ord=np.inf)
4.适用的数据分析模型
所以如果把切比雪夫不等式用于高斯分布的数据集,会得到一个非常保守、粗糙的上下界。切比雪夫不等式的意义在于,它虽然是一个粗糙的估计,但是使用与任意分布的数据集和任意的正数
5.切比雪夫不等式的证明
http://makercradle.com/2017/切比雪夫不等式证明/
当 p 趋近于无穷大时,闵可夫斯基距离转化成切比雪夫距离(Chebyshev distance):
1.定义:
标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。标准欧氏距离的思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。
2.计算公式
假设样本集X的均值(mean)为m,标准差(standard deviation)为s,X的“标准化变量”表示为:
如果将方差的倒数看成一个权重,也可称之为加权欧氏距离(Weighted Euclidean distance)。
3.代码实现
import numpy as np
x=np.random.random(10)
y=np.random.random(10)
X=np.vstack([x,y])
#方法一:根据公式求解
sk=np.var(X,axis=0,ddof=1)
d1=np.sqrt(((x - y) ** 2 /sk).sum())
#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
d2=pdist(X,'seuclidean')
1.定义
马氏距离是基于样本分布的一种距离。物理意义就是在规范化的主成分空间中的欧氏距离。所谓规范化的主成分空间就是利用主成分分析对一些数据进行主成分分解。再对所有主成分分解轴做归一化,形成新的坐标轴。由这些坐标轴张成的空间就是规范化的主成分空间。
2.计算公式
3.代码实现
import numpy as np
x=np.random.random(10)
y=np.random.random(10)
#马氏距离要求样本数要大于维数,否则无法求协方差矩阵
#此处进行转置,表示10个样本,每个样本2维
X=np.vstack([x,y])
XT=X.T
#方法一:根据公式求解
S=np.cov(X) #两个维度之间协方差矩阵
SI = np.linalg.inv(S) #协方差矩阵的逆矩阵
#马氏距离计算两个样本之间的距离,此处共有10个样本,两两组合,共有45个距离。
n=XT.shape[0]
d1=[]
for i in range(0,n):
for j in range(i+1,n):
delta=XT[i]-XT[j]
d=np.sqrt(np.dot(np.dot(delta,SI),delta.T))
d1.append(d)
#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
d2=pdist(XT,'mahalanobis')
4.马氏距离的特点
1.定义
几何中,夹角余弦可用来衡量两个向量方向的差异;机器学习中,借用这一概念来衡量样本向量之间的差异。
2.计算公式
vector1 = np.array([1,2,3])
vector2 = np.array([4,7,5])
op7=np.dot(vector1,vector2)/(np.linalg.norm(vector1)*(np.linalg.norm(vector2)))
print(op7)
#输出
#0.929669680201
4.适用的数据分析模型
1.定义
两个等长字符串s1与s2的汉明距离为:将其中一个变为另外一个所需要作的最小字符替换次数。例如:
The Hamming distance between "1011101" and "1001001" is 2.
The Hamming distance between "2143896" and "2233796" is 3.
The Hamming distance between "toned" and "roses" is 3.
汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。因此,如果向量空间中的元素a和b之间的汉明距离等于它们汉明重量的差a-b。
2.应用
汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。比如在信息编码过程中,为了增强容错性,应使得编码间的最小汉明距离尽可能大。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。
3.代码实现
v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
smstr=np.nonzero(v1-v2)
print(smstr) # 不为0 的元素的下标
sm= np.shape(smstr[0])[0]
print( sm )
#输出
#(array([0, 2, 3, 5, 6, 7]),)
#6
4.应用
信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。
1.定义
2.应用
3.代码实现
import scipy.spatial.distance as dist
v1=np.array([1,1,0,1,0,1,0,0,1])
v2=np.array([0,1,1,0,0,0,1,1,1])
matv=np.array([v1,v2])
print(matv)
ds=dist.pdist(matv,'jaccard')
print(ds)
#输出
#[[1 1 0 1 0 1 0 0 1] [0 1 1 0 0 0 1 1 1]]
# [ 0.75]
1.定义
以上的距离度量方法度量的皆为两个样本(向量)之间的距离,而信息熵描述的是整个系统内部样本之间的一个距离,或者称之为系统内样本分布的集中程度(一致程度)、分散程度、混乱程度(不一致程度)。系统内样本分布越分散(或者说分布越平均),信息熵就越大。分布越有序(或者说分布越集中),信息熵就越小。
2.计算给定的样本集X的信息熵的公式:
参数的含义:
信息熵越大表明样本集S的分布越分散(分布均衡),信息熵越小则表明样本集X的分布越集中(分布不均衡)。当S中n个分类出现的概率一样大时(都是1/n),信息熵取最大值log2(n)。当X只有一个分类时,信息熵取最小值0。
简单说来,各种“距离”的应用场景简单概括为:
空间:欧氏距离
路径:曼哈顿距离
国际象棋国王:切比雪夫距离
以上三种的统一形式:闵可夫斯基距离
加权:标准化欧氏距离
排除量纲和依存:马氏距离
向量差距:夹角余弦
编码差别:汉明距离
集合近似度:杰卡德类似系数与距离
相关:相关系数与相关距离
参考:
https://blog.csdn.net/qq_19707521/article/details/78479532
https://www.jianshu.com/p/84cdaeeeeba3
https://my.oschina.net/hunglish/blog/787596
https://www.cnblogs.com/daniel-D/p/3244718.html
https://blog.csdn.net/weixin_42715356/article/details/82845376