- 【机器学习】逻辑回归(LogisticRegression)原理与实战
GentleCP
机器学习(深度学习)逻辑回归logisticregression原理与实战机器学习
文章目录前言一、什么是逻辑回归1.1逻辑回归基础概念1.2逻辑回归核心概念二、逻辑回归Demo2.1数据准备2.2创建逻辑回归分类器2.3分类器预测三、逻辑回归实战3.1数据准备3.2数据划分与模型创建3.3预测数据评估模型四、参数选择五、总结六、参考资料本文属于我的机器学习/深度学习系列文章,点此查看系列文章目录前言本文主要通过文字和代码样例讲述逻辑回归的原理(包含逻辑回归的基础概念与推导)和实
- 机器学习里的逻辑回归Logistic Regression基本原理与应用
硅基创想家
AI-人工智能与大模型机器学习逻辑回归人工智能
LogisticRegression即逻辑回归,是一种广泛应用于机器学习和数据挖掘领域的有监督学习算法,以下从原理、应用、算法优缺点等方面进行介绍:基本原理线性回归基础:逻辑回归基于线性回归模型,其基本形式为:z=w1x1+w2x2+⋯+wnxn+bz=w_1x_1+w_2x_2+\cdots+w_nx_n+bz=w1x1+w2x2+⋯+wnxn+b其中xix_ixi是特征变量,wiw_iwi是对
- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 【Java】已解决:java.util.concurrent.ExecutionException
屿小夏
java开发语言android
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 强化学习在机器人控制中的应用:从理论到实践
Echo_Wish
前沿技术人工智能机器人
强化学习在机器人控制中的应用:从理论到实践大家好,我是你们熟悉的人工智能与Python领域自媒体创作者Echo_Wish。今天我们来聊聊一个炙手可热的话题——强化学习在机器人控制中的应用。近年来,随着人工智能技术的飞速发展,机器人在各个领域的应用越来越广泛。而强化学习作为一种重要的机器学习方法,为机器人控制提供了强有力的技术支持。接下来,让我们一起探讨强化学习在机器人控制中的原理和实践,并通过具体
- Apache Iceberg 与 Apache Hudi:数据湖领域的双雄对决
夜里慢慢行456
大数据大数据
在数据存储和处理不断发展的领域中,数据湖仓的概念已经崭露头角,成为了一种变革性的力量。数据湖仓结合了数据仓库和数据湖的最佳元素,提供了一个统一的平台,支持数据科学、商业智能、人工智能/机器学习以及临时报告等多种关键功能。这种创新的方法不仅促进了实时分析,还显著降低了平台成本,增强了数据治理,并加速了用例的实现。数据存储和处理的演变催生了被称为数据湖仓的现代分析平台。这些平台旨在解决传统架构的局限性
- AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率
小赖同学啊
python人工智能自动化测试(apppcAPI)人工智能自然语言处理gpt
在软件测试中,AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率。以下是几个具体的应用场景及对应的代码实现示例:1.自动生成测试用例AI大模型可以根据需求文档或用户故事自动生成测试用例。代码示例(使用OpenAIGPTAPI):importopenai#设置OpenAIAPI密钥openai.api_key="your-openai-api-key"#
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- Chrome将网页保存为PDF的实战教程
爱编程的喵喵
Python基础课程Windows实用技巧windowschrome网页保存为PDF实战教程
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Chrome将网页保存为PDF的实战
- Python机器学习舆情分析项目案例分享
数澜悠客
数字化转型python机器学习开发语言
数据收集与准备1.数据收集多样化数据源:从社交媒体平台(如微博、Twitter)、新闻网站、论坛等多渠道收集数据,以获取更全面的舆情信息。可以使用Python的requests库和网页解析库(如BeautifulSoup)进行网页数据爬取,使用Tweepy库获取Twitter数据。数据标注:对于监督学习,需要对收集到的数据进行标注,标记为积极、消极或中性等类别。可以使用人工标注的方式,也可以利用半
- 2月第五讲:深度剖析 Python 编程中的数据处理与机器学习应用
2501_90442144
python机器学习开发语言
一、引言在当今数字化时代,编程已经成为推动各个领域发展的关键力量。Python作为一种高级编程语言,以其简洁、易读、功能强大等特点,在数据处理、机器学习、人工智能等众多领域得到了广泛的应用。本文将深入探讨Python在数据处理和机器学习方面的应用,通过实际案例展示其强大的功能和灵活性,帮助读者更好地理解和掌握Python编程在这些领域的应用技巧。二、Python基础概述2.1Python的特点与优
- 零基础入门机器学习 -- 第四章分类问题与逻辑回归
山海青风
#机器学习机器学习分类逻辑回归python人工智能
4.1分类vs回归在机器学习中,任务通常分为两大类:回归(Regression):用于预测连续数值,如房价、温度、工资等。例如:预测明天的气温(28.5°C)。预测一辆二手车的价格(30,000元)。分类(Classification):用于预测离散类别,如垃圾邮件vs正常邮件。例如:判断一封邮件是否是垃圾邮件(“垃圾邮件”or“正常邮件”)。预测一个贷款申请是否会被批准(“批准”or“拒绝”)。
- 利用Blackbox AI让编程更轻松
人工智能ai开发图像处理
引言随着人工智能技术的发展,AI已经成为工作中不可缺少的工具之一。俗话讲“术业有专攻”,对AI来说当然也是如此。由于训练集、调教等方面的差别,不同的AI适用的工作也不尽相同。在编程辅助方面,已经有一系列比较成熟的平台,但它们一方面价格昂贵,另一方面功能比较单一。Blackbox.ai是一个新出现的人工智能平台,它主要针对的是编程和机器学习方面的AI技术落地。和其他AI平台相比,它提供了简洁美观的界
- Python中的决策树算法探索
Soft_Leader
算法python决策树
在Python中,决策树算法是一种常用的机器学习技术,用于分类和回归问题。下面我们将探索如何使用Python中的scikit-learn库来实现决策树算法,并简要介绍其基本概念和用法。1.安装必要的库如果你还没有安装scikit-learn库,你可以使用pip来安装它:bash复制代码pipinstall-Uscikit-learn2.导入必要的库和模块python复制代码fromsklearn.
- 多模态模型详解
换个网名有点难
深度学习人工智能计算机视觉
多模态模型是什么多模态模型是一种能够处理和理解多种数据类型(如文本、图像、音频、视频等)的机器学习模型,通过融合不同模态的信息来提升任务的性能。其核心在于利用不同模态之间的互补性,增强模型的鲁棒性和准确性。如何融合多个模型以下是多模态模型的融合方法及关键技术的详细解析:一、多模态模型的核心概念模态定义:单模态:单一类型的数据(如纯文本或纯图像)。多模态:多种类型数据的组合(如“图像+文本”“音频+
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- 【收藏不迷路】380种群智能优化算法-Matlab代码免费获取(截至2025.2.14)
88号技师
智能优化算法算法matlab优化算法人工智能
群智能优化算法可以作为很好的工具来解决许多实际问题,如特征选择、图像分割、医学诊断,经济排放调度问题,植物病害识别,工程设计,PID优化控制,设备故障诊断,机器学习模型参数整定等等。在这个领域,有一个理论:没有免费午餐(NoFreeLunch,NFL)理论。它从逻辑上证明了不存在最适合解决所有优化问题的元启发式算法。换句话说,特定的元启发式可能在一组问题上显示出非常有希望的结果,但相同的算法可能在
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- 《探秘Hogwild!算法:无锁并行SGD的神奇之路》
人工智能深度学习
在深度学习和机器学习的领域中,优化算法的效率和性能一直是研究的重点。Hogwild!算法作为一种能够实现无锁并行随机梯度下降(SGD)的创新方法,受到了广泛关注。下面就来深入探讨一下Hogwild!算法是如何实现这一壮举的。基础原理铺垫随机梯度下降(SGD)算法是基于梯度下降算法产生的常见优化算法。其目标是优化损失函数,通过对每一个超参数求偏导得到当前轮的梯度,然后向梯度的反方向更新,不断迭代以获
- VSCode通过跳板机免密连接远程服务器的解决方案
爱编程的喵喵
Python基础课程vscode服务器跳板机免密连接解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了VSCode通过跳板机免密连接远程服
- 股票自动化交易
reset2021
python
股票自动化交易是指通过编写程序自动执行股票买卖操作,以减少人为干预,提高交易效率和准确性。Python作为一种功能强大且易于上手的编程语言,广泛应用于金融领域,尤其是在量化交易和自动化交易中。本文将介绍如何使用Python实现一个简单的股票自动化交易系统。1.自动化交易的基本流程股票自动化交易通常包括以下几个步骤:数据获取:从交易所或第三方API获取实时股票数据。策略制定:基于技术指标或机器学习模
- 零基础入门机器学习 -- 第一章什么是机器学习?
山海青风
#机器学习机器学习人工智能python
1.1机器学习的定义机器学习(MachineLearning,ML)是让计算机从数据中学习,然后在没有明确编程的情况下进行预测或决策的技术。传统编程:程序员写出明确的规则,例如“如果温度低于0℃,显示‘结冰’”。机器学习:计算机分析历史天气数据,自行找出“低温→可能结冰”的规律,然后对新数据进行预测。机器学习的核心思想是:数据+算法=经验+预测能力。1.2机器学习vs传统编程特点传统编程机器学习规
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- 物流数字化转型:报关单ocr api应用场景、报关单识别接口
OCR_API
接口ocr
在全球化贸易日益频繁的今天,物流行业的效率和准确性对于企业的竞争力至关重要。翔云报关单OCR(光学字符识别)API助力物流企业实现数字化转型。报关单识别接口是一种通过图像处理和机器学习技术自动识别并提取报关单信息的技术解决方案。它能够快速准确地从纸质或电子版报关单中读取关键数据,如货物名称、数量、金额等,并将其转换为结构化的数字格式。这不仅大大提高了工作效率,还减少了人为错误的可能性。应用场景示例
- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
E绵绵
Everything人工智能科技机器学习大模型pythonAIGC应用
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 大模型稀疏动态架构
deepdata_cn
垂域模型语言模型
DeepSeek应用稀疏动态架构(SparseDynamicArchitecture)是其大模型技术的核心创新点。大模型稀疏动态架构是一种用于构建大规模人工智能模型的先进架构,整体提高了模型的效率、灵活性和性能。一、发展历程1.早期探索阶段起源基础:20世纪8090年代的早期机器学习主要集中在决策树、SVM、KNN等经典算法,模型规模小,依赖手工特征。之后在2006年GeoffreyHinton提
- 《深度解析:批量、随机和小批量梯度下降的区别与应用》
人工智能深度学习
在机器学习和深度学习的领域中,梯度下降算法是优化模型参数的核心工具之一。而批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)是梯度下降算法的三种常见变体,它们在计算效率、收敛速度和准确性等方面各有特点。原理与计算方式批量梯度下降(BGD):BGD在每次迭代时,都会使用整个训练数据集来计算损失函数的梯度,然后根据梯度更新模型参数。例如,若训练集中有1000个样本,那么每次迭代
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,