- 太速科技-基于3U VPX的 Jetson Xavier NX GPU计算主板
北京太速科技股份有限公司
人工智能
基于3UVPX的JetsonXavierNXGPU计算主板一、产品概述基于3UVPX的JetsonXavierNXGPU计算主板,是AI人工智能的低功耗计算平台,是LINUX环境下软件开发等的理想工具,拥有VPX标准连接器和特性的接口。二、板卡原理框图三、板卡外扩功能P0接口电源输入+12V,板卡总功耗60W以内P1接口1路RS422接口,一路GigabitEthernet前面板接口MICROUS
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- webgl threejs 云渲染(服务器渲染、后端渲染)解决方案
allenjiao
Threejswebglthreejs云渲染后端渲染服务器渲染云流化三维云渲染
云渲染和流式传输共享三维模型场景1、本地无需高端GPU设备即可提供三维项目渲染云渲染和云流化媒体都可以让3D模型共享变得简单便捷。配备强大GPU的远程服务器早就可以处理密集的处理工作,而专有应用程序,用户也可以从任何个人设备查看全保真模型并与之交互。2、云流媒体实现多终端联动共享价值更高在项目应用场景中,在大屏、电脑、平板、手机和其它移动终端,可以实现多屏联动、远程协助,三维云流化让客户访问时可以
- 构建centos7镜像调用外部gpu
周子青
linux
sudovi/etc/docker/daemon.json{"runtimes":{"nvidia":{"path":"/usr/bin/nvidia-container-runtime","runtimeArgs":[]}}}/*{"registry-mirrors":["https://9cpn8tt6.mirror.aliyuncs.com"]}{"runtimes":{"nvidia":{
- 无网络entos7报错ImportError: /lib64/libm.so.6: version `GLIBC_2.27‘ not found更新glibc
夏离
网络
最近在尝试使用sklearn的升级版cuml,因为是一台没有连接互联网的gpu机器,所以构建cuml环境过程很坎坷,需要各种将各种whl包在线下载后上传到服务器中。当我终于解决完包的互相依赖问题后,在importcuml时候遇到一个错误:ImportError:/lib64/libm.so.6:version`GLIBC_2.27’notfound(requiredby/anaconda3/env
- Centos安装GPU驱动,使用100元显卡玩转deepseek
white.tie
centoslinux运维
步骤1:安装NVIDIA驱动程序1.1安装显卡驱动编译工具yuminstallgccmakekernel-devel1.2安装显卡驱动依赖包yuminstallvulkan-loader1.3下载驱动安装https://www.nvidia.cn/drivers/details/220730/chmodu+xNVIDIA-Linux-x86_64-550.54.15.run./NVIDIA-Lin
- Gemma 3 发布:最强单 GPU/TPU 可运行模型,性能超 Llama-405B!
新加坡内哥谈技术
人工智能自然语言处理语言模型深度学习copilotllama
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/GoogleDeepMind再次掀起AI界的狂潮,正式推出Gemma3——一款轻量级但性
- DeepSeek开源:FlashMLA深度解析:Hopper架构上的大模型推理革命
花生糖@
AIGC学习资料库AI·未来DeepSeek实用集开源架构FlashMLADeepSeek技术AIAIGC
2025年2月24日,DeepSeek以「开源周」首日发布的FlashMLA技术,重新定义了Hopper架构GPU在AI推理领域的性能极限。这款专为NVIDIAH800/H100系列优化的MLA(Multi-headLatentAttention)解码内核,通过突破性算法设计与硬件协同优化,在可变长度序列处理场景中实现了3000GB/s内存带宽与580TFLOPS计算吞吐的里程碑式突破。其开源策略
- 【JS性能优化黑魔法】从8秒到0.8秒的奇迹の逆袭(祖传代码大改造)—— 让老板跪下喊爸爸的极致优化指南
vvvae1234
github
️第一章:渲染の禁忌仪式(重绘与回流)场景:购物车动画卡成PPT//菜鸟写法(每秒60次全局地震)setInterval(()=>{cartItems.forEach(item=>{item.style.top=`${Math.sin(Date.now())*10}px`;//持续触发回流});},16);//老司机优化(GPU加速の奥义)functionsmoothAnimation(){req
- H100解锁生成式AI算力新纪元
智能计算研究中心
其他
内容概要英伟达H100GPU以Hopper架构为核心,重新定义了生成式AI的算力边界。其创新性设计聚焦三大技术支柱:第三代TensorCore通过稀疏计算与混合精度支持,显著提升矩阵运算效率;显存带宽优化技术结合HBM3高带宽内存,将数据吞吐量提升至3.35TB/s,有效缓解大规模模型训练中的显存墙问题;动态编程加速器则针对AI工作负载特征实现指令级优化。这些突破使H100在生成式AI训练中实现高
- 云原生周刊:基于 KubeSphere LuBan 架构打造DeepSeek 插件
云计算
开源项目推荐KubeAIKubeAI是一个K8s上的AI推理操作器,旨在简化在生产环境中部署和管理大型语言模型(LLM)、向量嵌入和语音处理等机器学习模型。它提供与OpenAI兼容的API,支持在CPU和GPU上运行,并具备按需自动扩缩容的能力。KubeAI无需依赖Istio、Knative等其他系统,能够在几乎任何K8s集群中开箱即用。此外,它内置了模型代理,优化了键值缓存利用率,从而显著提升系
- 边缘计算Edge Computing
福梦
IoT
最近工作有接触到这个概念,先贴点资料在这里吧。OverviewEdgecomputingpushesapplications,dataandcomputingpower(services)awayfromcentralizedpointstothelogicalextremesofanetwork.Edgecomputingtakesadvantageofmicroservicesarchitec
- HiPixel开源AI驱动的图像超分辨率的原生macOS 应用程序,使用 SwiftUI 构建并利用 Upscayl 强大的 AI 模型
2301_78755287
swiftuiiosswift人工智能开源图像处理
一、软件介绍文末提供程序和源码下载HiPixel是一个开源程序基于SwiftUI构建的macOS原生应用程序,用于AI驱动的图像超分辨率,并利用Upscayl的强大AI模型。二、软件特征具有SwiftUI界面的原生macOS应用程序使用AI模型进行高质量图像放大通过GPU加速实现快速处理支持各种图像格式用于自动处理新添加图像的文件夹监控现代、直观的用户界面三、为什么选择HiPixel?虽然Upsc
- 芯片时钟树结构(H-tree,Fishbone,FlexH,Mesh等)的对比、应用实例及未来趋势
赛卡
人工智能服务器云计算边缘计算
引言在先进制程芯片设计中,时钟树综合(ClockTreeSynthesis,CTS)的优化程度直接影响芯片的时序收敛、功耗分布和面积利用率。随着工艺节点演进至5nm及以下,时钟网络的复杂性和设计约束呈现指数级增长。本文将深入解析H-tree、Fishbone、FlexHtree及Clockmesh四种主流时钟树结构的技术特性,结合服务器芯片、GPU及AI芯片的实战案例,并探讨主流EDA工具对CTS
- GPU底层优化的关键语言(深入解析PTX);PTX相比汇编语言的核心优势
AI-AIGC-7744423
rust开发语言后端
PTX作为英伟达GPU的底层语言,既是性能优化的利器,也是打破生态垄断的突破口。其“类汇编”特性赋予开发者对硬件的极致控制权,但高昂的开发成本与生态依赖仍制约其普及。随着AI技术的介入和开源生态的成熟,PTX或将成为下一代算力竞争的关键战场。一、PTX的技术定位与核心特性中间指令集的角色PTX(ParallelThreadExecution)是英伟达GPU架构中的中间指令集架构,介于高级编程语言(
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- 保姆级教学——本地免费部署DeepSeek-R1模型并通过Python调用
shuaige_shiwoa
python+AIpython开发语言AI编程ai
以下是如何在本地免费部署DeepSeek-R1模型并通过Python调用的详细指南:一、环境准备(Windows/Linux/Mac通用)1.硬件要求最低配置:16GB内存+20GB可用磁盘空间推荐配置:NVIDIAGPU(显存≥8GB)+CUDA11.8(CPU模式支持但速度较慢)2.软件依赖#创建虚拟环境(可选但推荐)condacreate-ndeepseekpython=3.10condaa
- Unity打包程序嵌入WinForm或者WPF(2) 问题
llhswwha
Unity
嵌入方式两种,官方的-parentHandle和我的WinAPI嵌入。问题1.主程序卡死[-parentHandle]:主程序打开3D后,切换到其他程序,再切换回来,卡死。[WinAPI]:主程序打开3D后,过一段时间卡死。其实这里的打开的Unity程序也算是其他程序了。这个问题结果发现是主程序其他部分导致的。问题2.嵌入Unity的控件隐藏后,GPU使用率达到99%。所谓的Unity控件隐藏是指
- 【解决方案】RAGFlow部分问题清单及解决方案备忘1
中杯可乐多加冰
各种解决方案人工智能deepseekragragflowLLM大模型
一、长时间显示:Taskisqueued多半是因为模型确实在队列中排队的原因,要么是内存一直在被占用中,要么是CPU或GPU一直在被占用中,可以首先检查硬件利用率:如果是内存导致的队列缓慢,可以将.env文件中的MEM_LIMIT改为26073741824如果是GPU或者CPU的原因,得具体排查,终止无用进程,如果都不是,检查docker容器的日志看看是否有任何异常:dockerlogs-frag
- 11B模型拿下开源视频生成新SOTA!仅用224张GPU训练,训练成本省10倍
量子位
关注前沿科技量子位224张GPU,训出开源视频生成新SOTA!Open-Sora2.0正式发布。11B参数规模,性能可直追HunyuanVideo和Step-Video(30B)。要知道,市面上诸多效果相近的闭源视频生成模型,动辄花费数百万美元训练成本。而Open-Sora2.0,将这一数字压缩到了20万美元。同时,此次发布全面开源模型权重、推理代码及分布式训练全流程,开发者们可以看过来!GitH
- python和pytorch关系_PyTorch:Python优先的深度学习框架
weixin_39877182
最近,Torch7团队开源了PyTorch。据该项目官网介绍,PyTorch是一个Python优先的深度学习框架,能够在强大的GPU加速基础上实现张量和动态神经网络。PyTorch是一个Python软件包,其提供了两种高层面的功能:使用强大的GPU加速的Tensor计算(类似numpy)构建于基于tape的autograd系统的深度神经网络如有需要,你也可以复用你最喜欢的Python软件包(如nu
- OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file,
小李飞刀李寻欢
Notebookhuggingfacebert分类大模型
场景:训练bert-base-chinese下游任务:分类。在一个服务器可以用,但GPU只有一个卡,只能换一个服务器,换个服务器又要重装环境,但后者下载模型有问题,手动用git-lfs下载后指定位置报错:Traceback(mostrecentcalllast):/examples/pytorch/text-classification/run_glue.py",line622,inmain()/
- WebGPU 为什么会取代 WebGL,看看 WebGPU 都做了啥?
贝格前端工场
webglUI设计大数据
WebGPU被普遍认为是WebGL的继任者,并有望在未来逐步取代WebGL,这一趋势主要由以下技术、生态和行业因素推动,本文带着大家看WebGPU针对WebGL提升了啥,改进了啥。1.技术层面的必然性(1)硬件能力的演进需求现代GPU功能支持:WebGL基于OpenGLES(设计于2000年代初),无法利用现代GPU的并行计算、光线追踪、网格着色器等高级功能。WebGPU直接对接Vulkan/Me
- python,pycharm,pytorch,向量数据库,环境搭建记录
dept123
pythonpycharmpytorch向量数据库
修改ubuntu上的pycharm镜像源,详细步骤-腾讯云开发者社区-腾讯云【超详细教程】2024最新Pytorch安装教程(同时讲解安装CPU和GPU版本)-CSDN博客https://zhuanlan.zhihu.com/p/667447891Quickstart|MilvusDocumentation
- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- (4-8)基于DeepSeekMoE架构的DeepSeek-V3:测试模型
码农三叔
训练RAG多模态)架构transformerdeekseek人工智能大模型
4.8测试模型DeepSeek-V3是一款基于PyTorch的深度学习模型,主要用于文本生成任务。在加载模型时,首先需要从指定路径加载模型的配置文件和预训练权重。加载完成后,模型被设置为评估模式,并移动到GPU上以加速推理过程。在生成文本时,用户可以输入提示文本,模型会根据这些提示生成相应的文本输出。生成过程支持交互式输入和批量处理两种模式,用户可以根据需要选择适合的方式进行文本生成。此外,模型的
- Unity3D 批处理与Draw Call减少(Batching & Reducing Draw Calls)
Thomas_YXQ
Unity3DUnity游戏开发优化性能优化
前言在Unity3D中,批处理(Batching)是优化渲染性能的核心手段,主要通过减少DrawCall数量来降低CPU与GPU之间的通信开销。以下是详细的优化策略与实践方法:对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀!一、DrawCall的基本概念DrawCall是CPU向GPU发起的一次渲染指令,每次调用都会触发GPU绘制一个物体。DrawCall过多会导致C
- 人工智能 - TensorRT与DeepDP终极指南:释放GPU潜能的深度学习推理优化之道
天机️灵韵
具身智能VLA人工智能人工智能算法深度学习pytorch
TensorRTTensorRT(TensorRuntime)是英伟达(NVIDIA)推出的高性能深度学习推理(Inference)优化器和运行时库,专为在NVIDIAGPU上高效部署深度学习模型而设计。它通过模型压缩、计算图优化、硬件级加速等技术,显著提升推理速度并降低资源消耗,广泛应用于自动驾驶、工业检测、实时视频分析等对延迟敏感的领域。一、TensorRT的核心功能模型优化与加速层融合(La
- PyTorch安装与环境配置终极指南:从零搭建高效深度学习开发环境(一)
WHCIS
pythonpytorch人工智能深度学习机器学习
一、环境搭建的核心意义与准备工作1.1深度学习环境的核心挑战深度学习开发环境涉及复杂的软件栈依赖关系:硬件兼容性:GPU型号(NVIDIA系列)与CUDA版本的匹配软件依赖链:Python版本→PyTorch版本→CUDA驱动→cuDNN加速库环境隔离需求:不同项目可能依赖冲突的库版本1.2硬件准备清单硬件类型最低要求推荐配置CPU4核8核以上内存8GB32GB+GPU支持CUDANVIDIART
- 英伟达的最新AI算力芯片——Blackwell芯片性能及应用场景
算力资源比较多
英伟达算力大模型人工智能语言模型gpu算力推荐算法
英伟达的最新AI算力芯片——Blackwell芯片在性能和应用场景上均有着显著的提升和广泛的应用。以下是对其详细性能及应用场景的归纳:性能特点晶体管数量:Blackwell架构的GPU拥有2080亿个晶体管。这一庞大的数量确保了芯片具有极高的计算能力和复杂性,使其成为目前市场上最强大的AI芯片之一。制程工艺:采用台积电4纳米(4nm)工艺制造。这种先进的制程技术不仅提高了芯片的集成度,还降低了功耗
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出