- 如何制作一份E-R图
菜汪本汪
数据库
ER模型,全称为实体联系模型、实体关系模型或实体联系模式图(ERD)(英语:Entity-relationshipmodel)由美籍华裔计算机科学家陈品山发明,是概念数据模型中高层描述所使用的数据模型或模式图。ER模型常用于信息系统设计中。比如,在概念结构设计阶段,ER模型用来描述信息需求和/或要存储在数据库中的信息类型,但是数据建模技术可以用来描述特定论域(感兴趣的区域)的任何本体(对使用的术语
- 针对数据仓库方向的大数据算法工程师面试经验总结
巴基海贼王
数据仓库大数据算法
⚙️一、技术核心考察点数据建模能力星型vs雪花模型:面试官常要求对比两种模型。星型模型(事实表+冗余维度表)查询性能高但存储冗余;雪花模型(规范化维度表)减少冗余但增加JOIN复杂度。需结合场景选择,如实时分析首选星型。建模实战题:例如设计电商销售数仓,需明确事实表(订单流水)、维度表(商品、用户、时间),并解释粒度选择(如订单级)。ETL流程与优化增量抽取方案:面试高频题。需掌握基于时间戳、CD
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- Power BI学习顺序指南
专注VB编程开发20年
学习信息可视化
在PowerBI的学习旅程中,你是否曾感到迷茫,投入了大量时间却看不到效果?其实,90%的问题都出在学习顺序不对上!别担心,按照这份正确的学习路径,帮助你在1个月内系统提升效率和技能!1️⃣基础准备:首先安装PowerBIDesktop并熟悉基本功能。2️⃣数据准备:掌握数据清洗和PowerQuery编辑器的使用。3️⃣数据建模:学会创建关系模型和DAX基础公式。4️⃣数据可视化:设计图表和仪表盘
- Labview教程进阶一(Labview与OPC UA设备通信)
微尘未知
七天精通Labview程序设计labviewOPCUALabview教程
1.Labview与OPCUA设备通信OPCUA通信协议优势显著,具体表现如下:跨平台兼容:支持多种操作系统和硬件平台,实现无缝数据交换。高安全性:内置加密、身份验证和授权机制,确保数据传输安全。高效数据交换:采用二进制编码和优化的传输协议,提高通信效率。复杂数据建模:支持对象、变量、方法和事件等复杂数据结构,便于构建和管理复杂系统。标准化接口:提供统一接口,简化设备集成和系统扩展。实时性支持:适
- YashanDB数据库的字段类型与数据模型
数据库
在数据库设计与实现过程中,字段类型的选择对数据模型的性能、可扩展性及维护成本产生显著影响。特别是在业务系统中,如何合理配置字段类型、设计数据结构以优化存储和访问效率,已经成为数据建模的重要课题。本文将深入探讨YashanDB数据库的字段类型及其数据模型,并提供一些基于技术原理的实用建议。字段类型设计基本数据类型YashanDB支持多种基本数据类型,满足不同场景的需求。基本类型包括:整型(INTEG
- ER图:数据库设计的可视化语言 - 搞懂数据关系的基石
大千AI助手
人工智能Python大数据数据库
在数据库设计和数据建模领域,ER图(实体-关系图)绝对是最基础、最核心的可视化工具之一。它用最直观的方式描绘了现实世界中的数据及其关系,是构建可靠数据库的蓝图。今天,我们就来聊聊这个技术基石。本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。往期文章推荐:20.决策树:被低估的规则引擎,80%可解释性需求的首选方案19.实战指南:用DataHub管理Hive元数据18.一键规范
- 决策树:化繁为简的智能决策利器
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能DecisionTreeTree数据挖掘
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。想象一个相亲决策过程:对方收入>30万?→是→见面否→颜值高?→是→先聊聊否→放弃这种层层递进的判断结构,正是决策树的核心思想——它模仿人类思考方式,将复杂问题拆解为一系列简单判断,最终得出结论。往期文章推荐:20.用Mermaid代码画ER图:AI时代的数据建模利器19.ER图:数据库设计的可视化语言-搞懂数据关系的基石18.
- 深入解析ID3算法:信息熵驱动的决策树构建基石
大千AI助手
人工智能Python#OTHER算法决策树机器学习人工智能DecisionTreeID3信息熵
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。ID3(IterativeDichotomiser3)是机器学习史上的里程碑算法,由RossQuinlan于1986年提出。它首次将信息论引入决策树构建,奠定了现代决策树的理论基础。本文将深入剖析其数学本质与实现细节。往期文章推荐:20.用Mermaid代码画ER图:AI时代的数据建模利器19.ER图:数据库设计的可视化语言-搞
- AI学习指南高数篇-泛函分析
俞兆鹏
AI学习指南ai
AI学习指南高数篇-泛函分析概述在数学领域中,泛函分析是研究无限维向量空间及其内涵结构的分支学科。泛函分析通过研究向量空间内的连续线性泛函,解决了无限维空间上函数序列的极限性质以及函数空间的拓扑性质等问题。泛函分析在AI中的使用场景泛函分析在人工智能领域中发挥着重要作用,特别是在机器学习和深度学习领域。通过泛函分析的方法,AI系统可以更好地处理高维数据,从而更准确地进行模式识别、数据建模和预测分析
- ISO/IEC 8824-2 Part 2: 信息对象规范(Information object specification)
alonetown
ISO/IEC8824详解ISO/IEC8824-2信息对象规范
一、核心目标解决复杂场景的“动态数据建模”问题当基础数据类型无法满足需求时(如“协议字段需根据上下文动态变化”),信息对象机制通过模板化定义实现灵活扩展。二、核心概念类比技术概念生活比喻信息对象类(Class)“招聘职位说明书”模板(规定岗位必须包含:职位名称、薪资范围、技能要求)信息对象(Object)具体的招聘JD(例如:[职位名称=Java工程师,薪资=20K-30K,技能=Spring])
- 时序数据管理的新维度:解析IoTDB与HBase的技术边界
时序数据说
iotdbhbase数据库时序数据库分布式开源
在物联网与工业大数据场景中,数据的时序特性对存储与计算提出了独特挑战。面对海量设备生成的高频时序数据,如何在有限的资源内实现高效写入、灵活查询与实时分析,成为企业技术选型的核心考量。本文将从架构设计、数据建模、性能表现及场景适配等角度,对比分析IoTDB与HBase的技术差异,探索时序数据库的演进方向。一、设计哲学的分野:专用时序与通用存储HBase作为经典的NoSQL数据库,以宽表模型和LSM-
- 量化价值投资领域:竞争优势的案例研究
量化价值投资入门到精通
网络ai
量化价值投资领域:竞争优势的案例研究关键词:量化价值投资、竞争优势、护城河、多因子模型、财务指标分析、回测框架、超额收益摘要:本文聚焦量化价值投资领域中竞争优势的量化分析与实战应用,系统解析如何通过财务数据建模、护城河指标量化、多因子策略构建等技术手段,将企业竞争优势转化为可验证的投资逻辑。结合苹果、亚马逊、可口可乐等经典案例,演示从数据采集到策略回测的完整流程,揭示量化框架下竞争优势的识别方法与
- 低代码可配置化统计分析平台架构设计
木鱼时刻
低代码数据可视化
1.设计目标本方案旨在构建一个低代码可配置、支持多业务复用、具备计算能力和权限控制的统计分析平台,满足快速搭建数据看板、灵活定义组件等需求。具体如下:配置化生成:通过低代码或零代码的方式,快速生成统计分析页面。多业务场景复用:支持不同业务线通过配置快速搭建专属页面。可扩展性:后续可添加其他组件。权限与安全:支持多级权限控制。2.功能模块2.1计算中心数据源管理:支持数据源接入与管理。数据建模:通过
- 《数据建模-经典教程》读书笔记七:键
小木谈数
数据建模-经典教程读书笔记数据库
一、理解候选键、主键及备用键键由一个或多个属性构成,其目的在于实施规则,有效数据检索,而且允许从一个实体导航到另一个实体。候选键是一个或多个可以唯一标识实体实例的属性。候选键具备以下4个基本特征:1)唯一性:候选键必须不能标识多于一个实体实例(或现实世界中的事物)。2)强制性:候选键不能为空,每个实体实例要求必须能被一个特定的候选键值标识,候选键取不同值的数目,始终与不同的实体实例数目一致。如果实
- Spring Data MongoDB助力后端高效开发
AI大模型应用实战
springmongodbjavaai
SpringDataMongoDB助力后端高效开发关键词:SpringDataMongoDB、NoSQL、文档数据库、Repository模式、聚合框架、性能优化、数据建模摘要:本文深入探讨SpringDataMongoDB如何简化后端开发流程,提升开发效率。文章从核心概念入手,详细分析其架构原理和关键特性,通过实际代码示例展示CRUD操作、复杂查询和聚合功能实现。同时,针对性能优化、事务管理和实
- Elasticsearch中的地理空间(Geo)数据类型介绍
安审若无
Elasticsearch专栏elasticsearch搜索引擎全文检索
在Elasticsearch中,地理空间(Geo)数据类型用于存储和处理与地理位置相关的数据,支持基于地理坐标的查询、过滤和分析。这类数据类型允许用户在分布式环境中高效地处理地理空间相关的搜索、聚合和可视化需求,广泛应用于地图应用、物流追踪、位置服务(LBS)等场景。一、核心地理空间数据类型Elasticsearch提供了以下几种地理空间数据类型,用于不同场景的地理数据建模:geo_point(地
- 后端使用Spring Data Cassandra的常见问题及解决
后端开发笔记
Cspringjava后端ai
后端使用SpringDataCassandra的常见问题及解决关键词:SpringDataCassandra、NoSQL数据库、数据建模、分页查询、性能优化、异常处理、连接配置摘要:本文以SpringDataCassandra的实际开发场景为背景,系统梳理了后端开发者最常遇到的8大核心问题(连接配置、数据建模、分页查询等),结合生活案例和代码示例,一步一步拆解问题现象、根因分析和解决方案。无论是刚
- 有向数据模型(数据建模-USS)
Litlesme
数据建模-USS数据建模数据分析数据库数据仓库数据分析sql
在统一星型模式中,在构建PuppiniBridge(或简称桥接表)前,需要先分析物理数据模型(物理表间的关系),FrancescoPuppini推荐通过绘制单向的ERD(实体关系图)来分析,称这种图叫做有向数据模型(ODM,OrientedDataModel),比如:有向数据模型的模型图的结构是一个有向树(DirectedTree)。实际上在多数实际场景下其实原本的结构是有向无环图(Directe
- 【Dv3Admin】工具模型配置文件解析
Mr数据杨
待分类-Web开发django
数据建模是后端开发的核心环节,高质量的基础模型设计能极大提升项目的开发效率与数据可靠性。通过规范化模型层结构,可以在保证一致性的同时,减少重复工作和潜在的逻辑漏洞。文章解析dvadmin/utils/models.py的设计与实现,重点介绍软删除机制、核心审计字段的抽象模型,以及动态模型工具的应用场景,剖析其对系统扩展性与一致性带来的实际价值。文章目录models.py项目源码解析应用案例总结mo
- Java Web 开发详细流程
笑非不退
Javajava开发语言
一、项目立项与需求分析阶段(0%)1.1商业需求确认与产品经理沟通核心业务目标目标:构建一个图书管理系统用户:图书管理员、普通用户功能:登录、查看、增删改图书、权限控制、分页、搜索1.2输出文档PRD(产品需求文档)ER图(数据建模)UML用例图接口草图(APIMock文档)项目甘特图/工作排期(Jira/TAPD)二、系统设计与环境准备阶段(10%)2.1技术栈选择(通用、可复用)层级技术选型前
- 如何站在指标体系之巅看智能数据建模产品(GAI)
qwfys200
Data数据指标体系建模
理解指标体系的核心目标智能数据建模产品的指标体系需围绕业务价值、模型性能、数据质量和用户体验四大维度构建。核心目标是量化产品效能,为迭代优化提供数据支撑。需明确指标与业务目标的关联性,避免“为指标而指标”。构建分层指标体系框架战略层指标:聚焦商业价值,如收入增长、成本节约、客户留存率。战术层指标:衡量模型效果,如预测准确率、AUC值、特征重要性排名。执行层指标:监控数据流水线,如数据覆盖率、特征缺
- 深入理解SQLMesh中的Lookback、Forward-Only和Auto-Restatement特性
梦想画家
数据分析工程sqlmesh数据工程
在数据仓库和ETL(Extract,Transform,Load)流程中,处理数据变更、延迟到达的数据以及模式变更是一项挑战。SQLMesh作为一款强大的数据建模工具,提供了多种特性来帮助数据工程师优雅地处理这些问题。本文将深入探讨SQLMesh中的三个关键特性:Lookback、Forward-Only和Auto-Restatement,以及它们如何帮助构建更健壮的数据管道。Lookback:处
- 大数据领域数据架构的模型设计思路
AI天才研究院
大数据架构ai
大数据领域数据架构的模型设计思路关键词:大数据、数据架构、模型设计、数据仓库、数据建模摘要:本文深入探讨了大数据领域数据架构的模型设计思路。首先介绍了大数据数据架构模型设计的背景,包括目的、预期读者等内容。接着阐述了核心概念与联系,分析了不同类型的数据模型及其关联。详细讲解了核心算法原理和具体操作步骤,结合Python代码进行说明。通过数学模型和公式进一步剖析了设计的本质,并举例说明。给出了项目实
- 广告推荐原理分析
惜之惜之
人工智能
推荐算法的核心技术主要基于用户行为分析、数据建模和多维度特征匹配,其核心逻辑是通过对用户显性/隐性反馈数据的深度挖掘,结合机器学习模型实现精准预测。以下从推荐机制原理和语音监听争议两个维度进行解析:一、推荐算法识别用户喜好的核心技术1行为数据建模-显性反馈:通过用户主动行为(如点赞、收藏、购买)直接获取偏好数据。例如用户在短视频平台的点赞行为会被记录为正向反馈-隐性反馈:分析停留时长、重复播放、滑
- IP风险度自检,多维度守护网络安全
彬彬醤
web安全tcp/ip网络重构安全网络协议智能路由器
如今IP地址不再只是网络连接的标识符,更成为评估安全风险的核心维度。IP风险度通过多维度数据建模,量化IP地址在网络环境中的安全威胁等级,已成为企业反欺诈、内容合规、入侵检测的关键工具。据Gartner报告显示,2025年全球78%的企业将IP风险度纳入网络安全评估体系,其核心价值在于将模糊的安全威胁转化为可量化、可管理的风险指标,帮助组织提前规避90%以上的已知风险。在每秒产生200万次网络攻击
- 基于规则匹配实现企业政策精准匹配实战案例
梦想画家
数据分析工程数据工程规则引擎
在数字化政务和企业服务领域,政策匹配是一项重要应用。企业具备的条件(如专利数量、研发投入、营收规模等)需要与政府出台的政策(如高新技术企业认定、研发补贴、税收优惠等)进行智能匹配,帮助企业快速找到符合自身条件的政策奖励。本文将深入探讨政策匹配系统的设计与实现,包括:系统架构设计(数据准备、规则引擎、匹配算法)核心实现步骤(数据建模、条件解析、规则匹配)关键技术与开源工具(Python、规则引擎、数
- 数仓开发面试题汇总-数据建模&数据治理
话数Science
1024程序员节大数据
1.如何建设数仓,如何构建主题域数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。可以这样理解:数据仓库对异构数据源进行集成,集成后按照主题进行了重组,并包含历史数据,且不再修改。如果对数据仓库还不够理解,可以先搞清楚关系型数据库与数据仓库的区别,OLTP和OLAP的区别等。如何建设数仓,技术方案选型上有很多选择:云服务/自建、流处理/批处理、MPP/Hado
- 浅析时空数据存储、优化-来自前端的看法
香蕉可乐荷包蛋
大数据sql前端学习数据结构时序数据库
时空数据(SpatiotemporalData)是指与时间和空间相关的数据,例如地理位置随时间变化的轨迹、气象数据、交通流量等。存储和优化时空数据是一个复杂的任务,涉及数据建模、存储引擎选择、索引优化、查询性能等多个方面。以下是时空数据存储和优化的关键技术和策略:1.数据建模时空数据类型:点数据:如GPS坐标点。轨迹数据:如移动对象的路径。区域数据:如随时间变化的地理区域。数据模型:时间维度:使用
- 数据挖掘技术与应用实验报告(三) —— 应用非线性模型进行客运量预测的实例
小李独爱秋
数据挖掘技术与应用数据挖掘可视化非线性预测模型python
一、实验目的掌握非线性回归模型的基本原理及其在客运量预测中的应用方法,理解非线性模型相较于线性模型的优势与适用场景。通过某省1987—2006年客运量相关数据,分析公路客运量与社会总客运量的变化趋势,探究时间序列中隐含的非线性关系。培养数据建模能力,包括数据预处理、模型参数估计、模型检验及预测分析,为交通规划提供理论支持。二、实验内容根据某省交通统计汇编材料得到下表中所列数据,包括某省1987-2
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,