源代码及相关素材Github库
打开命令行,输入下面这行命令,回车执行即可。
pip install numpy matplotlib pillow wordcloud imageio jieba snownlp itchat -i https://pypi.tuna.tsinghua.edu.cn/simple
# 导入词云制作第三方库wordcloud
import wordcloud
# 创建词云对象,赋值给w,现在w就表示了一个词云对象,(WordCloud()中W和C记得要大写!)
w = wordcloud.WordCloud()#可以在`WordCloud()`括号里填入各种参数,控制词云的字体、字号、字的颜色、背景颜色等等。
# 调用词云对象的generate方法,将文本传入
w.generate('and that government of the people, by the people, for the people, shall not perish from the earth.')
# 将生成的词云保存为output1.png图片文件,保存出到当前文件夹中
w.to_file('output1.png')
运行完之后,图片这个样子,为什么没有and that, of the等等呢,因为wordcloud自动将and that by the not from
等废话词组过滤掉,并且把出现次数最多的people
大号显示,还有,每运行一次词云图并不一样。
wordcloud库会非常智能地按空格进行分词及词频统计,出现次数多的词就大。
import wordcloud
# 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
w = wordcloud.WordCloud(width=1000,
height=700,
background_color='white',
font_path='msyh.ttc')
# 调用词云对象的generate方法,将文本传入
w.generate('从明天起,做一个幸福的人。喂马、劈柴,周游世界。从明天起,关心粮食和蔬菜。我有一所房子,面朝大海,春暖花开')
# 将生成的词云保存为output2-poem.png图片文件,保存到当前文件夹中
w.to_file('output2-poem.png')
font_path='msyh.ttc'
即该字体路径+后缀名,注意:Win10这里的字体后缀是“ttc”,而cWin7的字体后缀是“ttf”!stop_words={"python","java"}
pip install imageio
安装imageio)import imageio
mk = imageio.imread("picture.png")
w = wordcloud.WordCloud(mask=mk)
import wordcloud
# 从外部.txt文件中读取大段文本,存入变量txt中
f = open('关于实施乡村振兴战略的意见.txt',encoding='utf-8')
txt = f.read()
# 构建词云对象w,设置词云图片宽、高、字体、背景颜色等参数
w = wordcloud.WordCloud(width=1000,
height=700,
background_color='white',
font_path='msyh.ttc')
# 将txt变量传入w的generate()方法,给词云输入文字
w.generate(txt)
# 将词云图片导出到当前文件夹
w.to_file('output3-sentence.png')
图如下:
jieba
安装中文分词库jieba:在命令行中输入pip install jieba
精确模式(最常用,只会这个就行)
:每个字只用一遍,不存在冗余词汇。jieba.lcut('动力学和电磁学')
全模式
:把每个字可能形成的词汇都提取出来,存在冗余。jieba.lcut('动力学和电磁学',cut_all=True)
搜索引擎模式
:将全模式分词的结果从短到长排列好。jieba.lcut_for_search('动力学和电磁学')
以下命令演示了三种分词模式及结果,精确模式是最常用的。
>>> import jieba
>>> textlist1 = jieba.lcut('动力学和电磁学')
>>> textlist1
['动力学', '和', '电磁学']
>>> textlist2 = jieba.lcut('动力学和电磁学',cut_all=True)
>>> textlist2
['动力', '动力学', '力学', '和', '电磁', '电磁学', '磁学']
>>> textlist3 = jieba.lcut_for_search('动力学和电磁学')
>>> textlist3
['动力', '力学', '动力学', '和', '电磁', '磁学', '电磁学']
例子:
# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud
# 构建并配置词云对象w
w = wordcloud.WordCloud(width=1000,
height=700,
background_color='white',
font_path='msyh.ttc')
# 调用jieba的lcut()方法对原始文本进行中文分词,得到string
txt = '同济大学(Tongji University),简称“同济”,是中华人民共和国教育部直属,由教育部、国家海洋局和上海市共建的全国重点大学,历史悠久、声誉卓著,是国家“双一流”、“211工程”、“985工程”重点建设高校,也是收生标准最严格的中国大学之一'
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)#将分开的词用空格连接
# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)
# 将词云图片导出到当前文件夹
w.to_file('output4-tongji.png')
例如:
# 导入词云制作库wordcloud和中文分词库jieba
import jieba
import wordcloud
# 导入imageio库中的imread函数,并用这个函数读取本地图片,作为词云形状图片
import imageio
mk = imageio.imread("wujiaoxing.png")
w = wordcloud.WordCloud(mask=mk)
# 构建并配置词云对象w,注意要加scale参数,提高清晰度
w = wordcloud.WordCloud(width=1000,
height=700,
background_color='white',
font_path='msyh.ttc',
mask=mk,
scale=15)
# 对来自外部文件的文本进行中文分词,得到string
f = open('关于实施乡村振兴战略的意见.txt',encoding='utf-8')
txt = f.read()
txtlist = jieba.lcut(txt)
string = " ".join(txtlist)
# 将string变量传入w的generate()方法,给词云输入文字
w.generate(string)
# 将词云图片导出到当前文件夹
w.to_file('output6-village.png')
运行的图片如下:
wordcloud=generate(text)
方法生成c词云,传入的参数text代表你要分析的文本,最后使用wordcloud.tofile("a.png")
函数,将得到的词云图像直接保存为图片格式文件。 import matplotlib.pypliot as plt
plt.imshow(wordcloud)
plt.axis("off")#因为不需要显示X轴和Y轴的坐标,所以要将坐标轴关闭
plt.show()