- 基于热力梯度的线圈设计用来更替新型的储能方式
热爱电气
数学建模
摘要研究背景:传统电磁储能技术受限于较低的能量密度(约1-5Wh/kg)和充放电速度。热力梯度储能技术通过调控温度场实现多模式能量转换,其潜力能量密度可达100Wh/kg以上。创新点:1.提出三层异质线圈结构(铜基主储层+Bi₂Te₃热电转换层+GdFeO₃磁热调谐层),实现温度梯度与磁场的协同调控。2.开发动态热-电-磁耦合模型,结合有限元分析(COMSOL)与机器学习算法(遗传算法优化参数)。
- 向量存储与检索器
小码农0912
AI应用开发向量存储与检索器向量存储检索器langchain
文章目录向量存储如何创建和查询向量存储相似性搜索按向量进行相似性搜索异步操作检索器如何使用向量存储作为检索器从向量存储创建检索器最大边际相关性检索传递搜索参数相似性得分阈值检索指定前k案例案例1案例2langchain支持从向量数据库和其他来源检索数据,以便与LLM(大型语言模型)工作流程集成。它们对于应用程序来说非常重要,这些应用程序需要获取数据以作为模型推理的一部分进行推理,就像检索增强生成(
- 鸿蒙初学者学习手册(HarmonyOSNext_API14)_UIContext(@ohos.arkui.UIContext (UIContext))
余多多_zZ
学习harmonyos华为笔记
前言Context是鸿蒙中及其重要的Api包括了非常多的接口和功能,而且在官方文档中也是优先推荐使用Context中的接口在Stage模型中基本介绍1.UI实例与窗口的一一关联在Stage模型中,WindowStage或Window是用于管理窗口的类,它们通过loadContent接口加载页面内容。当调用loadContent时,系统会创建一个UI实例,这个实例是页面内容的具体表现形式,包括布局、
- 《今日AI-人工智能-编程日报》-源自2025年2月28日
小亦编辑部
每日AI-人工智能-编程日报人工智能
技术突破OpenAI发布GPT-4.5:OpenAI正式推出新一代大模型GPT-4.5,语言理解、情商及逻辑推理能力显著增强,幻觉问题大幅减少,计算效率较GPT-4提升超10倍,已逐步向用户开放试用。国产模型Kimi发布k1.6版本:国产模型Kimi发布的k1.6版本,在编程任务评测中超越GPTo3-mini,首次登顶榜首。其“快思考”架构使响应速度提升至秒级,部署成本下降40%。企业动态贵州广电
- 《今日AI-人工智能-编程日报》-源于2025年3月11日
小亦编辑部
每日AI-人工智能-编程日报人工智能
1.AI行业动态1.1Manus通用智能体初成型,开启AIAgent新时代中泰证券发布研报称,首款通用型AI智能体Manus已问世,能够将复杂任务拆解为可执行的步骤链,并在虚拟环境中灵活调用工具,标志着AI从“Reasoner”走向“Agent”阶段。Manus的成功引发了开源复现潮,DeepSeek模型已被整合到OWL项目中,并在GAIA基准测试中表现接近Manus。1.2DeepSeek-R2
- 【机器学习】skit-learn中LSI模型的实现
一穷二白到年薪百万
机器学习pythonsklearn
参考文献[1]sklearn_api.lsimodel–ScikitlearnwrapperforLatentSemanticIndexing[2]Pythonmodels.LsiModel方法代码示例
- pytorch训练权重转化为tensorflow模型的教训
小枫小疯
深度学习部署模型转移pytorchtensorflow人工智能
模型构建时候有时候在工程量比较大的时候,不可避免使用迭代算法,迭代算法本身会让错误的追踪更加困难,因此掌握基本的框架之间的差异非常重要。以下均是在模型转换过程中出现的错误。shuffleoperation(shuffle操作)这个操作原本是用来将各个通道之间的信息进行打乱后,此时面临重要的问题就是,如果将通道打乱,在pytorch里面与tensorflow中间,两种通道排序是不一样的,是采用不同的
- MMD模型及动作一键完美导入UE5-Blender方案(三)
tangfuling1991
UE4移动端AndroidiOS入门ue5blenderMMD模型动作
1、下载并安装blender_mmd_tools插件1、下载并安装Blender,Blender,下载Blender3.6,下载太新的版本可能会跟blender_mmd_tools不匹配2、github下载blender_mmd_tools:https://github.com/UuuNyaa/blender_mmd_tools/3、Edit->Preference->Addons->Instal
- OpenCV 深度学习模块 cv2.dnn 与其他深度学习框架的优缺点对比及适用场景
白.夜
深度学习opencv
OpenCV提供了一个深度学习模块cv2.dnn,让开发者能够在计算机视觉项目中轻松加载和推理深度学习模型。相比于TensorFlow、PyTorch等其他深度学习框架,cv2.dnn有其独特的优点与缺点,适用于不同的应用场景。在这篇文章中,我们将详细分析cv2.dnn的优缺点,并讨论它的适用场景。一、cv2.dnn的优点1.简单易用cv2.dnn提供了一个相对简单且易于使用的接口,适合已经在使用
- 深度学习中的 blob 格式:与普通 image 的区别及转换原因
白.夜
深度学习人工智能
在深度学习模型推理过程中,我们经常会用到cv2.dnn.blobFromImage函数将普通图像转换为blob格式。那么,blob格式到底是什么?它和普通image有什么区别?为什么在模型推理中需要这种转换?本文将用通俗的语言为你解答这些问题。1.什么是blob格式?blob是OpenCV中用于深度学习模型输入的一种特殊数据格式,全称为BinaryLargeObject。它本质上是一个多维数组(通
- 第三十个问题-讲讲Agent、MCP、OpenAI Responses API
释迦呼呼
AI一千问人工智能语言模型机器学习深度学习自然语言处理
1.Agent(智能体)136定义与核心功能Agent是什么:能够自主执行复杂任务的智能实体,通常基于大语言模型(LLM)构建,配备指令和工具,可独立完成多步骤任务(如网络搜索、文件处理、自动化操作等)18。应用场景:客服自动化、法律文档检索、代码审查、数据输入、股票分析等36。OpenAI的Agent生态:DeepResearch:自动生成带引用的研究报告。Operator:通过控制浏览器光标执
- 大模型在招聘场景下的应用
IT猫仔
人工智能ai学习
大模型在招聘场景下的应用具有广泛的可能性。一、简历自动化筛选与匹配应用:大模型能够自动分析大量简历,根据职位要求筛选出合适的候选人,并按匹配度排序。Prompt写法:请对以下简历进行筛选,找出符合【职位名称】职位要求的候选人。职位要求包括【具体要求】。请提供筛选结果,并按照匹配度从高到低排序。举例:请对以下简历进行筛选,找出符合“产品经理”职位要求的候选人。职位要求包括具备3年以上产品经验、熟悉用
- DeepSeek多语言智能创作引擎解析
智能计算研究中心
其他
内容概要在人工智能技术加速演进的背景下,DeepSeek系列产品通过混合专家架构(MoE)与670亿参数的协同设计,构建了多模态智能创作引擎的核心竞争力。该系统依托动态路由机制,将视觉语言理解模块与多语言处理单元进行深度耦合,使模型在解析图文混合信息时展现出超越单一模态的认知能力。尤为突出的是,其分层参数激活策略将推理成本降低至传统密集模型的38%,同时维持了95%以上的任务完成精度。行业分析机构
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- iOS OC使用正则表达式去除特殊符号并加粗文本,适用于接入AI大模型的流模式数据的文字处理
MrZWCui
iOSiosxcodeobjective-c正则表达式学习
1、编写逻辑使用分类(Category)的方法拓展NSString,本文使用NSString(Markdown),NSString的分类来编写一个通用方法,使用正则表达式匹配字符串实现去除特殊字符,并自定义文字属性。在接入AI大模型后,返回的字符串会带有特殊字符用于做文字处理,下面代码简单进行了文字处理展示。2、代码实现1、NSString+Markdown.h#importNS_ASSUME_N
- 通义千问:阿里巴巴的AI大模型深度解析
俊星学长
人工智能
通义千问:阿里巴巴的AI大模型深度解析在人工智能(AI)技术日新月异的今天,大型语言模型作为其中的佼佼者,正逐步改变着我们的生活与工作方式。阿里巴巴推出的通义千问,作为这一领域的佼佼者,以其卓越的性能和广泛的应用场景,引起了业界的广泛关注。本文将从通义千问的简介、模型架构、技术特点与优势、应用场景以及未来发展等多个方面,对其进行全面解析。一、通义千问简介通义千问是由阿里云开发的一款大型语言模型,旨
- 【模拟面试】计算机考研复试集训(第二天)
Albert Edison
计算机考研复试高频考点面试考研职场和发展c++数据结构算法操作系统
文章目录前言一、专业面试1、OSI参考模型和TCP/IP模型的主要区别是什么?简述各层功能2、什么是瀑布模型?其优缺点是什么?3、什么是递归?使用时需注意什么?4、监督学习与无监督学习的核心区别是什么?请举例说明典型算法5、你在项目中遇到过哪些技术挑战?是如何解决的?二、英文口语1、Canyoutellusaboutatimeyouworkedinateamandfacedchallenges?H
- DeepSeek:中国大模型 “破壁者” 引发的四大产业地震
赵同学爱学习
人工智能chatgptDeepSeek语言模型大模型开源
导语:当全球AI产业还在为GPT-4的1750亿参数惊叹时,中国团队DeepSeek以颠覆性创新撕开了大模型领域的“铁幕”。这款首个引发国际学术界集体关注的中文大模型,正从技术底层重构产业规则,其冲击波已蔓延至硬件、软件、商业模式的每个角落。一、算力霸权瓦解:低成本训推技术改写游戏规则1.1训练成本“悬崖式下降”DeepSeek通过混合专家架构(MoE)动态路由算法,在同等效果下将模型激活参数压缩
- 小白零基础学数学建模系列-Day1-数学建模入门介绍与案例实践
川川菜鸟
数学建模小白到精通系列数学建模
目录一、数学建模的定义和重要性1.1什么是数学建模?1.2数学建模的重要性二、常见的数学建模方法概述2.1线性模型和案例2.1.1特点2.1.2应用2.1.3问题2.1.4模型2.1.5数学表达式2.1.6求解算法2.2非线性模型和案例2.2.1特点2.2.2应用2.2.3问题2.2.4模型2.2.5数学表达式2.2.6算法2.3动态模型2.3.1特点2.3.2应用2.3.3常见问题2.3.4模型
- Transformer动画讲解 - 工作原理
ghx3110
transformer深度学习人工智能
Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。阶段一:Embedding(向量化)“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自
- 谷歌Gemini 3大模型发布,AI领域再掀波澜!
广拓科技
人工智能
在人工智能的浩瀚宇宙中,每一次重大突破都如同一颗璀璨的新星,照亮我们对未来的想象。而近期,谷歌发布的Gemini3大模型,无疑是其中最为耀眼的存在,它在AI领域激起的波澜,迅速蔓延至全球科技圈,引发了广泛关注与热烈讨论。随着AI技术的迅猛发展,我们已经见证了众多令人惊叹的创新成果。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI正以前所未有的速度改变着我们的生活和工作方式。在这
- 大语言模型的潜力是否被高估
dev.null
AI#NLP语言模型人工智能机器学习
关于大语言模型(LLM)的潜力是否被高估,目前学术界和产业界存在显著分歧。以下从技术能力、应用局限性和未来发展方向三个方面综合分析:一、技术能力的争议:潜力与局限并存对现实世界的理解与模拟MIT的研究表明,LLM在训练过程中可能自发形成对现实世界的内部模拟。例如,通过解决卡雷尔编程谜题(KarelPuzzle),模型在没有直接接触环境信息的情况下,正确率从初始的随机指令提升至92.4%,并展现出对
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- 论零信任架构在现代网络安全中的变革性作用
烁月_o9
安全web安全网络
论零信任架构在现代网络安全中的变革性作用摘要本文深入探讨零信任架构(ZTA)在网络安全领域的关键地位与创新价值。通过分析传统网络安全模型的局限性,阐述ZTA的核心原则、技术组件及实践应用,揭示其在应对复杂多变的网络威胁时,如何重塑安全理念与防护模式,为保障组织数字资产安全提供前瞻性的策略与方法。一、引言在数字化浪潮席卷全球的当下,网络边界的模糊性使传统基于边界防御的安全模型捉襟见肘。零信任架构应运
- ollama+qwq小试牛刀
llm
序本文主要演示一下ollama运行QwQ-32B模型步骤pullollamapullqwqpullingmanifestpullingc62ccde5630c...100%▕███████████████████████████████████████████████████████████████████████████████████████████████████████▏19GBpulli
- 18、企业级服务-JMS
跟着汪老师学编程
java开发语言java-ee
JavaMessageService(JMS)一.引言JavaMessageService(JMS)是Java平台上用于实现消息orientedmiddleware(消息中间件)的标准API。它为企业级应用中的异步通信提供了一种高效、灵活且可靠的方式,允许不同的系统组件之间通过发送和接收消息进行通信,而无需直接依赖彼此的实现细节。JMS支持两种主要的消息模型:点对点(Point-to-Point,
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- 国产 DeepSeek V3 被秒成“前浪“?谷歌开放最强 Gemini 2.0 全家桶:速度快60倍,上下文还长16倍!
Bryan Ding
人工智能深度学习
谷歌向所有人发布了Gemini2.0——迄今为止谷歌“功能最强大”的人工智能模型套件。1谷歌Gemini2.0向所有人开放去年12月,谷歌发布Gemini2.0Flash的实验版本,正式开启了代理型AI的新时代。Gemini2.0Flash是谷歌为开发者群体打造的高效主力模型,具有低延迟、高性能等优势。今年早些时候,谷歌在GoogleAIStudio中更新了2.0FlashThinkingExpe
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l