其他笔记在专栏 深度学习 中。
#标量
import torch
x = torch.tensor([3])
y = torch.tensor([2])
x + y, x * y, x / y, x ** y
(tensor([5]), tensor([6]), tensor([1.5000]), tensor([9]))
#向量
x = torch.arange(4)
x, x[3], len(x), x.shape
(tensor([0, 1, 2, 3]), tensor(3), 4, torch.Size([4]))
#矩阵
A = torch.arange(20).view(5, 4)
print(A)
print(A.T) #转置
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
tensor([[ 0, 4, 8, 12, 16],
[ 1, 5, 9, 13, 17],
[ 2, 6, 10, 14, 18],
[ 3, 7, 11, 15, 19]])
#对称矩阵:B=B.T,沿对角线对称
B = torch.tensor([[1,2,3], [2,0,4], [3,4,5]])
print(B)
print(B == B.T)
tensor([[1, 2, 3],
[2, 0, 4],
[3, 4, 5]])
tensor([[True, True, True],
[True, True, True],
[True, True, True]])
#张量
x = torch.arange(24).reshape(2, 3, 4)
x, x + 2
(tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]),
tensor([[[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13]],
[[14, 15, 16, 17],
[18, 19, 20, 21],
[22, 23, 24, 25]]]))
#给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone() # 通过分配新内存,将A的一个副本分配给B
A, A + B
(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
tensor([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))
#两个矩阵的按元素乘法称为哈达玛积(Hadamard product)(数学符号 ⊙ )
A * B
tensor([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]])
默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。 我们还可以指定张量沿哪一个轴来通过求和降低维度。
以矩阵为例,为了通过求和所有行的元素来降维(轴0),我们可以在调用函数时指定axis=0。
#由于输入矩阵沿0轴降维以生成输出向量,因此输入的轴0的维数在输出形状中丢失。
A0 = A.sum(axis=0) #一行
A0, A0.shape
(tensor([40., 45., 50., 55.]), torch.Size([4]))
#指定axis=1将通过汇总所有列的元素降维(轴1)。因此,输入的轴1的维数在输出形状中消失。
A1 = A.sum(axis=1) #一列
A1, A1.shape
(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))
#沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和
A2 = A.sum(axis=[0, 1])
print(A2, A2.shape) #这是降维了
print(A.sum(), A.shape) #此时维度不变
tensor(190.) torch.Size([])
tensor(190.) torch.Size([5, 4])
#计算均值
A.mean(), A.sum() / A.numel()
(tensor(9.5000), tensor(9.5000))
#同样,计算平均值的函数也可以沿指定轴降低张量的维度
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
(tensor([ 8., 9., 10., 11.]), tensor([ 8., 9., 10., 11.]))
现在我们希望求和的时候,保持维度不变:
A_unchange = A.sum(axis=1, keepdims=True)
A_unchange
tensor([[ 6.],
[22.],
[38.],
[54.],
[70.]])
这样做的好处是,可以通过广播机制让A除以A_unchange:
A / A_unchange
tensor([[0.0000, 0.1667, 0.3333, 0.5000],
[0.1818, 0.2273, 0.2727, 0.3182],
[0.2105, 0.2368, 0.2632, 0.2895],
[0.2222, 0.2407, 0.2593, 0.2778],
[0.2286, 0.2429, 0.2571, 0.2714]])
#调用cumsum函数表示累加求和
A, A.cumsum(axis=0)
(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),
tensor([[ 0., 1., 2., 3.],
[ 4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]]))
#点积dot(x, y)
x = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y), torch.sum(x * y) #后两者意义相同
(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.), tensor(6.))
#向量积mv(x, y)
x = torch.arange(6).view([3, 2])
y = torch.tensor([8, 9])
x.shape, y.shape, torch.mv(x, y)
(torch.Size([3, 2]), torch.Size([2]), tensor([ 9, 43, 77]))
#矩阵乘mm(x, y)
x = torch.arange(6).view([3, 2])
y = torch.randperm(8).view([2, 4])
x, y, torch.mm(x, y)
(tensor([[0, 1],
[2, 3],
[4, 5]]),
tensor([[7, 2, 5, 4],
[3, 6, 0, 1]]),
tensor([[ 3, 6, 0, 1],
[23, 22, 10, 11],
[43, 38, 20, 21]]))
#L2范数是向量元素平方和的平方根norm(u)
u = torch.tensor([3.0, -4.0])
torch.norm(u)
tensor(5.)
#L1范数为向量元素的绝对值之和
u = torch.tensor([-1, 3, 5, -2])
torch.abs(u).sum()
tensor(11)
torch.ones((4, 9)), torch.norm(torch.ones((4, 9)))
(tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1.]]),
tensor(6.))