Spark源码阅读02-Spark核心原理之消息通信原理

Spark消息通信架构

在Spark中定义了通信框架接口,这些接口实现中调用了Netty的具体方法。通信框架使用了工厂设计模式,这种模式实现了对Netty的解耦,能够根据需要引入其他的消息通信工具。
Spark消息通信类图如下:
Spark源码阅读02-Spark核心原理之消息通信原理_第1张图片

通信框架在上图中虚线的部分。其具体实现步骤为:

  • ①定义RpcEnv和RpcEnvFactory两个抽象类,其中在RpcEnv中定义了RPC通信框架启动、停止和关闭等抽象方法;在RpcEnvFactory中定义了创建抽象方法
  • ②在NettyRpcEnv和NettyRpcEnvFactory类中使用了Netty对继承的方法进行了实现
  • ③在RpcEnv的object类中通过反射方法实现了创建RpcEnv的实例静态方法

上述Spark消息类图中各模块使用流程:

  • ①使用RpcEnv的静态方法创建RpcEnv实例,实例化Master
  • ②调用RpcEnv启动终端点方法,把Master的终端点和其对应的引用注册到RpcEnv中
  • ③若其他对象获取了Master终端点的引用,就能够发消息给Master进行通信了。

Spark启动消息通信

Spark启动过程中主要是Master与Worker之间的通信。其过程如下:
Spark源码阅读02-Spark核心原理之消息通信原理_第2张图片
其详细过程及源代码如下:
(1)Work向Master发送注册Worker的消息

private def registerWithMaster() {
     
    // onDisconnected may be triggered multiple times, so don't attempt registration
    // if there are outstanding registration attempts scheduled.
    registrationRetryTimer match {
     
      case None =>
       ...
        registerMasterFutures = tryRegisterAllMasters()
       ...
  }
  
/

private def tryRegisterAllMasters(): Array[JFuture[_]] = {
     
			...
            //获取Master终端点的引用
            val masterEndpoint = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME)

            //调用sendRegisterMessageToMaster方法注册消息
            sendRegisterMessageToMaster(masterEndpoint)
     		...
  }
  
/

private def sendRegisterMessageToMaster(masterEndpoint: RpcEndpointRef): Unit = {
     
    masterEndpoint.send(RegisterWorker(
      workerId,
      host,
      port,
      self,
      cores,
      memory,
      workerWebUiUrl,
      masterEndpoint.address))
  }
/

case class RegisterWorker(
      id: String,
      host: String,
      port: Int,
      worker: RpcEndpointRef,
      cores: Int,
      memory: Int,
      workerWebUiUrl: String,
      masterAddress: RpcAddress)
    extends DeployMessage {
     
    Utils.checkHost(host)
    assert (port > 0)
  }

(2)Master收到消息后,需要对Worker发送的消息进行验证、记录。如果注册成功,发送注册成功消息;否则发送注册失败消息。

override def receive: PartialFunction[Any, Unit] = {
     
	...
	case RegisterWorker(
	      ...
	      //Master处于STANDBY状态,返回“MASTER处于STANDBY状态”
	      if (state == RecoveryState.STANDBY) {
     
	        workerRef.send(MasterInStandby)
	      } else if (idToWorker.contains(id)) {
     
	        workerRef.send(RegisterWorkerFailed("Duplicate worker ID"))
	      } else {
     
	        val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
	          workerRef, workerWebUiUrl)
	
	        //registerWorker方法中注册Worker,该方法中会把Worker放到列表中
	        //用于后续运行任务时使用
	        if (registerWorker(worker)) {
     
	          persistenceEngine.addWorker(worker)
	          workerRef.send(RegisteredWorker(self, masterWebUiUrl, masterAddress))
	          schedule()
	        } else {
     
	          val workerAddress = worker.endpoint.address
	          logWarning("Worker registration failed. Attempted to re-register worker at same " +
	            "address: " + workerAddress)
	          workerRef.send(RegisterWorkerFailed("Attempted to re-register worker at same address: "
	            + workerAddress))
	        }
	      }
	      ...
	}

(3)当Worker接受到注册后,会定时发送心跳信息Heartbeat给Master,使得Master能了解Worker的实时状态。

  private def handleRegisterResponse(msg: RegisterWorkerResponse): Unit = synchronized {
     
    msg match {
     
      case RegisteredWorker(masterRef, masterWebUiUrl, masterAddress) =>
        if (preferConfiguredMasterAddress) {
     
          logInfo("Successfully registered with master " + masterAddress.toSparkURL)
        } else {
     
          logInfo("Successfully registered with master " + masterRef.address.toSparkURL)
        }
        
      	....
      	
          //如果设置清理以前应用使用的文件夹,则进行该动作
        if (CLEANUP_ENABLED) {
     
          logInfo(
            s"Worker cleanup enabled; old application directories will be deleted in: $workDir")
          forwordMessageScheduler.scheduleAtFixedRate(new Runnable {
     
            override def run(): Unit = Utils.tryLogNonFatalError {
     
              self.send(WorkDirCleanup)
            }
          }, CLEANUP_INTERVAL_MILLIS, CLEANUP_INTERVAL_MILLIS, TimeUnit.MILLISECONDS)
        }

        //向Master汇报Worker中Executor最新状态
        val execs = executors.values.map {
      e =>
          new ExecutorDescription(e.appId, e.execId, e.cores, e.state)
        }
        masterRef.send(WorkerLatestState(workerId, execs.toList, drivers.keys.toSeq))

      case RegisterWorkerFailed(message) =>
        if (!registered) {
     
          logError("Worker registration failed: " + message)
          System.exit(1)
        }

      case MasterInStandby =>
        // Ignore. Master not yet ready.
    }
  }

/

private[deploy] object DeployMessages {
     

	...
   case object SendHeartbeat

}

Spark运行时消息消息通信

Spark运行消息通信的交互过程如下图:
Spark源码阅读02-Spark核心原理之消息通信原理_第3张图片
其详细过程及源代码如下:
(1)执行应用程序需要启动SparkContext,在SparkContext的启动过程中,会先实例化SchedulerBackend对象(上图中创建的是SparkDeploySchedulerBackend对象,因为是独立运行模式),在该对象的启动中会继承DriverEndpoint和创建Appclient的ClientEndpoint的两个终端点。
在ClientEndpoint的tryRegisterAllMasters方法中创建注册线程池registerMasterThreadPool,在该线程池中启动注册线程并向Master发送RegisterApplication注册应用的消息。

 private def tryRegisterAllMasters(): Array[JFuture[_]] = {
     

      //由于HA等环境有多个Master,需要遍历所有的Master发送消息
      for (masterAddress <- masterRpcAddresses) yield {
     

        //向线程池中启动注册线程,当该线程读到应用注册成功标志registered=ture时,退出注册线程
        registerMasterThreadPool.submit(new Runnable {
     
          override def run(): Unit = try {
     
            if (registered.get) {
     
              return
            }
            logInfo("Connecting to master " + masterAddress.toSparkURL + "...")

            //获取Master终端点的引用,发送注册应用的消息
            val masterRef = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME)
            masterRef.send(RegisterApplication(appDescription, self))
          } catch {
     
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        })
      }
    }

当Master接收到注册应用的消息时,在registerApplication方法中记录应用消息并把该消息加入到等待运行应用列表中,注册完毕发送RegisteredApplication给ClientEndpoint,同时调用startExecutorOnWorker方法运行应用,通知Worker启动Executor。

private def startExecutorsOnWorkers(): Unit = {
     
    // Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app
    // in the queue, then the second app, etc.

    //使用FIFO调度算法运行应用,先注册的应用先运行
    for (app <- waitingApps) {
     
      val coresPerExecutor = app.desc.coresPerExecutor.getOrElse(1)
      // If the cores left is less than the coresPerExecutor,the cores left will not be allocated
      if (app.coresLeft >= coresPerExecutor) {
     
        // Filter out workers that don't have enough resources to launch an executor
        val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE)
          .filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&
            worker.coresFree >= coresPerExecutor)
          .sortBy(_.coresFree).reverse

        //确定运行在哪些Worker上和每个Worker分配用于运行的核数,分配算法有两种,一种时把应用
        //运行在尽可能多的Worker上,相反,另一种是运行在尽可能少的Worker上
        val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)

        // Now that we've decided how many cores to allocate on each worker, let's allocate them
        //通知分配的Worker,启动Worker
        for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
     
          allocateWorkerResourceToExecutors(
            app, assignedCores(pos), app.desc.coresPerExecutor, usableWorkers(pos))
        }
      }
    }
  }

(2)ApplicationClientEndpoint接收到Master发送RegisteredApplication消息,需要把注册表示registered改为true,Master注册线程获取状态变化后,完成注册Application。

 override def receive: PartialFunction[Any, Unit] = {
     

          //Master注册线程获取状态变化后,完成注册Application进程
      case RegisteredApplication(appId_, masterRef) =>
        // FIXME How to handle the following cases?
        // 1. A master receives multiple registrations and sends back multiple
        // RegisteredApplications due to an unstable network.
        // 2. Receive multiple RegisteredApplication from different masters because the master is
        // changing.
        appId.set(appId_)
        registered.set(true)
        master = Some(masterRef)
        listener.connected(appId.get)
		...
		
    }

(3)在Master类的startExecutorOnWorker方法中分配资源运行应用程序时,调用allocationWorkerResourceToExecutor方法实现Worker启动Executor。

override def receive: PartialFunction[Any, Unit] = synchronized {
     
	...
    case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
    		...
          //创建Executor执行目录
          val executorDir = new File(workDir, appId + "/" + execId)
          if (!executorDir.mkdirs()) {
     
            throw new IOException("Failed to create directory " + executorDir)
          }

         
          //通过SPARK_EXECUTOR_DIRS环境变量,在Worker中创建Executor中创建Executor执行目录,
          //当程序执行完后由Worker进行删除
          val appLocalDirs = appDirectories.getOrElse(appId, {
     
            val localRootDirs = Utils.getOrCreateLocalRootDirs(conf)
            val dirs = localRootDirs.flatMap {
      dir =>
              try {
     
                val appDir = Utils.createDirectory(dir, namePrefix = "executor")
                Utils.chmod700(appDir)
                Some(appDir.getAbsolutePath())
              } catch {
     
                case e: IOException =>
                  logWarning(s"${e.getMessage}. Ignoring this directory.")
                  None
              }
            }.toSeq
            if (dirs.isEmpty) {
     
              throw new IOException("No subfolder can be created in " +
                s"${localRootDirs.mkString(",")}.")
            }
            dirs
          })
          appDirectories(appId) = appLocalDirs

          //在ExecutorRunner中创建CoarseGrainedExecutorBackend对象,创建的是使用应用信息中的
          //command,而command在SparkDeploySchedulerBackend的start方法中构建
          val manager = new ExecutorRunner(
            appId,
            execId,
            appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
            cores_,
            memory_,
            self,
            workerId,
            host,
            webUi.boundPort,
            publicAddress,
            sparkHome,
            executorDir,
            workerUri,
            conf,
            appLocalDirs, ExecutorState.RUNNING)
          executors(appId + "/" + execId) = manager
          manager.start()
          coresUsed += cores_
          memoryUsed += memory_

          //向Master发送消息,表示Executor状态已经被更改ExecutorState.RUNNING
          sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
        } catch {
     
          case e: Exception =>
            logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e)
            if (executors.contains(appId + "/" + execId)) {
     
              executors(appId + "/" + execId).kill()
              executors -= appId + "/" + execId
            }
            sendToMaster(ExecutorStateChanged(appId, execId, ExecutorState.FAILED,
              Some(e.toString), None))
        }
      }

   ...
  }

在Executor创建中调用了fetchAndRunExecutor方法进行实现。

private def fetchAndRunExecutor() {
     
    try {
     
      // Launch the process

      val subsOpts = appDesc.command.javaOpts.map {
     
        Utils.substituteAppNExecIds(_, appId, execId.toString)
      }
      val subsCommand = appDesc.command.copy(javaOpts = subsOpts)

      //通过应用程序的信息和环境配置创建构造器builder
      val builder = CommandUtils.buildProcessBuilder(subsCommand, new SecurityManager(conf),
        memory, sparkHome.getAbsolutePath, substituteVariables)
      val command = builder.command()
      val formattedCommand = command.asScala.mkString("\"", "\" \"", "\"")
      logInfo(s"Launch command: $formattedCommand")

      //在构造器builder中添加执行目录信息
      builder.directory(executorDir)
      builder.environment.put("SPARK_EXECUTOR_DIRS", appLocalDirs.mkString(File.pathSeparator))
      // In case we are running this from within the Spark Shell, avoid creating a "scala"
      // parent process for the executor command
      builder.environment.put("SPARK_LAUNCH_WITH_SCALA", "0")

      // Add webUI log urls
      //在构造器builder中添加监控页面输入日志地址信息
      val baseUrl =
        if (conf.getBoolean("spark.ui.reverseProxy", false)) {
     
          s"/proxy/$workerId/logPage/?appId=$appId&executorId=$execId&logType="
        } else {
     
          s"http://$publicAddress:$webUiPort/logPage/?appId=$appId&executorId=$execId&logType="
        }
      builder.environment.put("SPARK_LOG_URL_STDERR", s"${baseUrl}stderr")
      builder.environment.put("SPARK_LOG_URL_STDOUT", s"${baseUrl}stdout")

      //启动构造器,创建CoarseGrainedExecutorBackend实例
      process = builder.start()
      val header = "Spark Executor Command: %s\n%s\n\n".format(
        formattedCommand, "=" * 40)

      // Redirect its stdout and stderr to files
      //输出创建CoarseGrainedExecutorBackend实例运行信息
      val stdout = new File(executorDir, "stdout")
      stdoutAppender = FileAppender(process.getInputStream, stdout, conf)

      val stderr = new File(executorDir, "stderr")
      Files.write(header, stderr, StandardCharsets.UTF_8)
      stderrAppender = FileAppender(process.getErrorStream, stderr, conf)

      // Wait for it to exit; executor may exit with code 0 (when driver instructs it to shutdown)
      // or with nonzero exit code
      //等待CoarseGrainedExecutorBackend运行结束,当结束时,向Worker发送退出状态信息
      val exitCode = process.waitFor()
      state = ExecutorState.EXITED
      val message = "Command exited with code " + exitCode
      worker.send(ExecutorStateChanged(appId, execId, state, Some(message), Some(exitCode)))
    } catch {
     
      case interrupted: InterruptedException =>
        logInfo("Runner thread for executor " + fullId + " interrupted")
        state = ExecutorState.KILLED
        killProcess(None)
      case e: Exception =>
        logError("Error running executor", e)
        state = ExecutorState.FAILED
        killProcess(Some(e.toString))
    }
  }
}

(4)Mater接收到Worker发送的ExecutorStateChanged消息

override def receive: PartialFunction[Any, Unit] = {
     
    ...
    case ExecutorStateChanged(appId, execId, state, message, exitStatus) =>
      val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId))
      execOption match {
     
        case Some(exec) =>
          val appInfo = idToApp(appId)
          val oldState = exec.state
          exec.state = state

          if (state == ExecutorState.RUNNING) {
     
            assert(oldState == ExecutorState.LAUNCHING,
              s"executor $execId state transfer from $oldState to RUNNING is illegal")
            appInfo.resetRetryCount()
          }
          //向Driver发送ExecutorUpdated消息
          exec.application.driver.send(ExecutorUpdated(execId, state, message, exitStatus, false))

          if (ExecutorState.isFinished(state)) {
     
            // Remove this executor from the worker and app
            logInfo(s"Removing executor ${exec.fullId} because it is $state")
            // If an application has already finished, preserve its
            // state to display its information properly on the UI
            if (!appInfo.isFinished) {
     
              appInfo.removeExecutor(exec)
            }
            exec.worker.removeExecutor(exec)

            val normalExit = exitStatus == Some(0)
            // Only retry certain number of times so we don't go into an infinite loop.
            // Important note: this code path is not exercised by tests, so be very careful when
            // changing this `if` condition.
            if (!normalExit
                && appInfo.incrementRetryCount() >= MAX_EXECUTOR_RETRIES
                && MAX_EXECUTOR_RETRIES >= 0) {
      // < 0 disables this application-killing path
              val execs = appInfo.executors.values
              if (!execs.exists(_.state == ExecutorState.RUNNING)) {
     
                logError(s"Application ${appInfo.desc.name} with ID ${appInfo.id} failed " +
                  s"${appInfo.retryCount} times; removing it")
                removeApplication(appInfo, ApplicationState.FAILED)
              }
            }
          }
          schedule()
        case None =>
          logWarning(s"Got status update for unknown executor $appId/$execId")
      }
	...
  }

(5)在DriverEndpoint终端点进行注册Executor。(在步骤(3)CoarseGrainedExecutorBackend启动方法Onstart中,会发送注册Executor消息给RegisterExecutor给DriverEndpoint)

override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
     

      case RegisterExecutor(executorId, executorRef, hostname, cores, logUrls) =>
        if (executorDataMap.contains(executorId)) {
     
          executorRef.send(RegisterExecutorFailed("Duplicate executor ID: " + executorId))
          context.reply(true)
        }
        
        ...
        
         //记录executor的编号,以及该executor使用的核数
          addressToExecutorId(executorAddress) = executorId
          totalCoreCount.addAndGet(cores)
          totalRegisteredExecutors.addAndGet(1)
          val data = new ExecutorData(executorRef, executorAddress, hostname,
            cores, cores, logUrls)
          // This must be synchronized because variables mutated
          // in this block are read when requesting executors
          //创建executor编号和其具体信息的键值列表
          CoarseGrainedSchedulerBackend.this.synchronized {
     
            executorDataMap.put(executorId, data)
            if (currentExecutorIdCounter < executorId.toInt) {
     
              currentExecutorIdCounter = executorId.toInt
            }
            if (numPendingExecutors > 0) {
     
              numPendingExecutors -= 1
              logDebug(s"Decremented number of pending executors ($numPendingExecutors left)")
            }
          }

          //回复executor完成注册消息
          executorRef.send(RegisteredExecutor)
          // Note: some tests expect the reply to come after we put the executor in the map
          context.reply(true)
          listenerBus.post(
            SparkListenerExecutorAdded(System.currentTimeMillis(), executorId, data))
          //分配运行任务资源并发送LaunchTask消息执行任务
          makeOffers()
        }
	...
    }

(6)当CoarseGrainedExecutorBackend接收到Executor注册成功的RegisteredExecutor消息时,在CoarseGrainedExecutorBackend容器中实例化Executor对象。

 override def receive: PartialFunction[Any, Unit] = {
     
    case RegisteredExecutor =>
      logInfo("Successfully registered with driver")
      try {
     
        //根据环境变量的参数,启动Executor,在Spark中,它是真正任务的执行者
        executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
      } catch {
     
        case NonFatal(e) =>
          exitExecutor(1, "Unable to create executor due to " + e.getMessage, e)
      }
      
      ...
}

实例化的Executor对象会定时向Driver发送心跳信息,等待Driver下发任务。

private val heartbeater = ThreadUtils.newDaemonSingleThreadScheduledExecutor("driver-heartbeater")

/

private def startDriverHeartbeater(): Unit = {
     

    //设置间隔时间
    val intervalMs = HEARTBEAT_INTERVAL_MS

    // Wait a random interval so the heartbeats don't end up in sync
    //等待随机时间间隔,这样心跳不会在同步中结束
    val initialDelay = intervalMs + (math.random * intervalMs).asInstanceOf[Int]

    val heartbeatTask = new Runnable() {
     
      override def run(): Unit = Utils.logUncaughtExceptions(reportHeartBeat())
    }
    //发送心跳信息给Driver
    heartbeater.scheduleAtFixedRate(heartbeatTask, initialDelay, intervalMs, TimeUnit.MILLISECONDS)
  }
}

(7)CoarseGrainedExecutorBackend的Executor启动后,接收到从DriverEndpoint终端点发送的LaunchTask执行任务消息,任务执行是在Executor的launchTask方法实现的。

override def receive: PartialFunction[Any, Unit] = {
     
	...
	 case LaunchTask(data) =>
	      if (executor == null) {
     
	
	        //当Executor没有成功启动时,输出异常日志并关闭Executor
	        exitExecutor(1, "Received LaunchTask command but executor was null")
	
	      } else {
     
	        val taskDesc = TaskDescription.decode(data.value)
	        logInfo("Got assigned task " + taskDesc.taskId)
	
	        //启动TaskRunner进程执行任务
	        executor.launchTask(this, taskDesc)
	      }
	      ...
}

调用executor的launchTask方法,在该方法中创建TaskRunner进程,然后把该进程加入到threadPool中,由Executor统一调度。

def launchTask(context: ExecutorBackend, taskDescription: TaskDescription): Unit = {
     
    val tr = new TaskRunner(context, taskDescription)
    runningTasks.put(taskDescription.taskId, tr)
    threadPool.execute(tr)
  }

(8)在TaskRunner执行任务完成时,会由向DriverEndpoint终端点发送状态变更StatusUpdate消息。

override def receive: PartialFunction[Any, Unit] = {
     
      case StatusUpdate(executorId, taskId, state, data) =>
	//调用TaskSchedulerImpl的statusUpdate方法,根据任务执行不同结果继续处理
        scheduler.statusUpdate(taskId, state, data.value)
        if (TaskState.isFinished(state)) {
     
          executorDataMap.get(executorId) match {
     
            case Some(executorInfo) =>
			//任务执行成功后,回收该Executor运行该任务的CPU,再根据实际情况分配任务
              executorInfo.freeCores += scheduler.CPUS_PER_TASK
              makeOffers(executorId)
            case None =>
              // Ignoring the update since we don't know about the executor.
              logWarning(s"Ignored task status update ($taskId state $state) " +
                s"from unknown executor with ID $executorId")
          }
        }
        ...
}

你可能感兴趣的:(Spark,Scala,spark,大数据,scala)