监督学习
无监督学习
区别
监督学习
无监督学习
分类问题
分类问题的应用
回归问题
回归问题的应用
回归在多领域也有广泛的应用
房价预测,根据某地历史房价数据,进行一个预测
金融信息,每日股票走向
…
机器学习一般的数据集会划分为两个部分:
训练数据:用于训练,构建模型
测试数据:在模型检验时使用,用于评估模型是否有效
sklearn 数据集划分API
sklearn.model_selection.train_test_split
sklearn.datasets
加载获取流行数据集
datasets.load_*()
获取小规模数据集,数据包含在datasets里
datasets.fetch_*(data_home=None)
获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/
获取数据集返回的类型
load*和fetch*返回的数据类型datasets.base.Bunch(字典格式)
data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
DESCR:数据描述
feature_names:特征名,新闻数据,手写数字、回归数据集没有
target_names:标签名,回归数据集没有
想一下之前做的特征工程的步骤?
1、实例化 (实例化的是一个转换器类(Transformer))
2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)
转换器的作用:进行特征工程的父类(Transformer)调用:fit_transform来完成数据的处理
fit_transform = fit + transform
Fit(): Method calculates the parameters μ and σ and saves them as internal objects
# 简单来说,就是求得训练集X的均值,方差,最大值,最小值,这些训练集X固有的属性。
transform(): Method using these calculated parameters apply the transformation to a particular dataset.
# 解释:在fit的基础上,进行标准化,降维,归一化等操作(看具体用的是哪个工具,如PCA,StandardScaler等)。
fit_transform(): joins the fit() and transform() method for transformation of dataset.
# 解释:fit_transform是fit和transform的组合,既包括了训练又包含了转换。
# transform()和fit_transform()二者的功能都是对数据进行某种统一处理(比如标准化~N(0,1),将数据缩放(映射)到某个固定区间,归一化,正则化等)
实例化过程中需要注意的点,训练集x_train使用fit_transform,而测试集只需要使用transform,不用fit(因为它需要统一方差,均值这些标准)
1、用于分类的估计器:
2、用于回归的估计器:
估计器的工作流程
传统机器学习算法流程
定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
两个样本的距离可以通过如下公式计算,又叫欧式距离
比如说,a(a1,a2,a3),b(b1,b2,b3)
√ ( ( 1 − 1 ) 2 + ( 2 − 2 ) 2 + ( 3 − 3 ) 2 ) √((1−1)^2+(2−2)^2+(3−3)^2 ) √((a1−b1)2+(a2−b2)2+(a3−b3)2)
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
# n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
# algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd
def knncls():
"""
K-近邻预测用户签到位置
:return:None
"""
# 读取数据
data = pd.read_csv("./data/FRelocation/train.csv/train.csv")
# 处理数据
# 1.缩小数据
data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
# 处理时间数据
time_value = pd.to_datetime(data['time'], unit='s')
# 把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
# 构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 把时间戳特征删除
data = data.drop(['time'], axis=1)
# 吧签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# 取出数据当中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
# 得出预测结果
y_predict = knn.predict(x_train)
print("预测的目标签到位置为:", y_predict)
# 得出准确率
print("预测的准确率:", knn.score(x_test, y_test))
return None
if __name__ == "__main__":
knncls()
结果为
预测的目标签到位置为: [4932578245 6424972551 3312463746 ... 6399991653 7803770431 6766324666]
预测的准确率: 0.4061465721040189
实例代码
from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
def knncls():
"""
#通过k-近邻算法对生物物种进行分类——鸢尾花(load_iris)
:return: None
"""
li = load_iris()
# 取出数据当中的特征值和目标值
x = li["data"]
y = li["target"]
# 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征集进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
# 得出预测结果
y_predict = knn.predict(x_test)
print("预测的目标签到位置为:", y_predict)
# 得出准确率
print("预测的准确率:", knn.score(x_test, y_test))
return None
if __name__ == "__main__":
knncls()
结果为
预测的目标签到位置为: [2 1 0 1 2 1 1 2 0 0 2 1 2 0 1 0 1 0 1 1 0 0 1 2 2 0 0 1 0 1 2 1 2 2 1 1 2 0]
预测的准确率: 0.8947368421052632
概率基础
公式可以理解为
( │ 1 , 2 , … ) = ( ( 1 , 2 , … │ ) ( ) ) / ( ( 1 , 2 , … ) ) (│1,2,…)=((1,2,… │)())/((1,2,…)) P(C│F1,F2,…)=(P(F1,F2,…│C)P(C))/(P(F1,F2,…))
其中c可以是不同类别
P©:每个文档类别的概率(某文档类别词数/总文档词数)
P(W│C):给定类别下特征(被预测文档中出现的词)的概率
计算方法:P(F1│C)=Ni/N (训练文档中去计算)
Ni为该F1词在C类别所有文档中出现的次数
N为所属类别C下的文档所有词出现的次数和
举例
问题:从上面的例子我们得到娱乐概率为0,这是不合理的,如果词频列表里面有很多出现次数都为0,很可能计算结果都为零
解决方法:拉普拉斯平滑系数
Font metrics not found for font: .
α为指定的系数一般为1,m为训练文档中统计出的特征词个数
sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
# alpha:拉普拉斯平滑系数
from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
def naviebayes():
"""
朴素贝叶斯进行文本分类
:return: None
"""
# 加载数据
news = fetch_20newsgroups(subset='all')
# 进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)
# 对数据进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)
# 进行朴素贝叶斯算法的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train, y_train)
y_predict = mlt.predict(x_test)
print("预测的文章类别为:", y_predict)
# 得出准确率
print("准确率为:", mlt.score(x_test, y_test))
print("每个类别的精确率和召回率:", classification_report(y_test,y_predict,target_names=news.target_names))
return None
if __name__ == "__main__":
naviebayes()
estimator.score() #一般最常见使用的是准确率,即预测结果正确的百分比
其他分类标准,F1-score,反映了模型的稳健型
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
超参数搜索-网格搜索API
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
对估计器的指定参数值进行详尽搜索
estimator:估计器对象
param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
cv:指定几折交叉验证
fit:输入训练数据
score:准确率
结果分析:
best_score_:在交叉验证中测试的最好结果
best_estimator_:最好的参数模型
cv_results_:每次交叉验证后的测试集准确率结果和训练集准确率结果
K-近邻网格搜索案例
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd
def knncls():
"""
K-近邻预测用户签到位置
:return:None
"""
# 读取数据
data = pd.read_csv("./data/FBlocation/train.csv")
# print(data.head(10))
# 处理数据
# 1、缩小数据,查询数据晒讯
data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
# 处理时间的数据
time_value = pd.to_datetime(data['time'], unit='s')
print(time_value)
# 把日期格式转换成 字典格式
time_value = pd.DatetimeIndex(time_value)
# 构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 把时间戳特征删除
data = data.drop(['time'], axis=1)
print(data)
# 把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# 取出数据当中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 进行数据的分割训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 进行算法流程 # 超参数
knn = KNeighborsClassifier()
# 构造一些参数的值进行搜索
param = {
"n_neighbors": [3, 5, 10]}
# 进行网格搜索
gc = GridSearchCV(knn, param_grid=param, cv=2)
gc.fit(x_train, y_train)
# 预测准确率
print("在测试集上准确率:", gc.score(x_test, y_test))
print("在交叉验证当中最好的结果:", gc.best_score_)
print("选择最好的模型是:", gc.best_estimator_)
print("每个超参数每次交叉验证的结果:", gc.cv_results_)
return None
if __name__ == "__main__":
knncls()