- [论文笔记]自监督sketch-to-image生成:Self-Supervised Sketch-to-Image Synthesis
沉迷单车的追风少年
深度学习-计算机视觉sketch深度学习计算机视觉
前言:2020年顶会同时出现了两篇很有意思的论文《Self-SupervisedSketch-to-ImageSynthesis》和《UnsupervisedSketch-to-PhotoSynthesis》,分别用自监督和无监督的方法做sketch-to-image生成,可以说是GANs在这一任务中表现的巅峰。目录主要贡献主要工作域转换模型TOMPS:边缘图、铅笔画图、草图sketch之间的区别
- 【论文笔记】:DuBox: No-Prior Box Objection Detection via Residual Dual Scale Detectors
Activewaste
#Anchor-free#特征层面#小目标检测DuBoxanchor-free
&Title:DuBox:No-PriorBoxObjectionDetectionviaResidualDualScaleDetectorsGithubaddrNone&Summary介绍了一种新的一阶段检测方法Dubox,它可以在没有先验框的情况下检测物体。设计的双尺度残差单元具有多尺度特性,使双尺度检测器不再独立运行。高层检测器学习低层检测器的残差。Dubox增强了启发式引导的能力,进一步使
- 【论文笔记】AutoML: A survey of the state-of-the-art(下篇)
pip install USART
学习笔记论文阅读记录论文阅读算法深度学习
目录4.ModelGeneration模型生成4.1SearchSpace搜索空间4.1.1Entire-structuredsearchspace基于整个架构的4.1.2Cell-basedsearchspace基于Cell的空间4.1.3Hierarchicalsearchspace层次化的空间4.1.3Morphism-basedsearchspace基于“态射”的空间4.2网络优化方法(搜
- 论文笔记 U-Net: Convolutional Networks for Biomedical Image Segmentation
城南皮卡丘
#深度学习caffe人工智能
摘要:人们普遍认为,深度网络的成功训练需要数千个带注释的训练样本。在本文中,我们提出了一种网络和训练策略,该策略依赖于大量使用数据增强来更有效地使用可用的注释样本。该体系结构包括用于捕获上下文的收缩路径和用于实现精确定位的对称扩展路径。我们表明,这样的网络可以从很少的图像进行端到端训练,并且在ISBI挑战中优于先前的最佳方法(滑动窗口卷积网络),用于分割电子显微堆栈中的神经元结构。使用在透射光显微
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- AIGC视频生成国产之光:ByteDance的PixelDance模型
好评笔记
AIGC-视频补档AIGC计算机视觉人工智能深度学习机器学习论文阅读面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言输入训练和推理时的数据处理总结相关工作视频生成长视频生成方法模型架构
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 【论文笔记】Multi-Task Learning as a Bargaining Game
xhyu61
机器学习学习笔记论文笔记论文阅读人工智能深度学习
Abstract本文将多任务学习中的梯度组合步骤视为一种讨价还价式博弈(bargaininggame),通过游戏,各个任务协商出共识梯度更新方向。在一定条件下,这种问题具有唯一解(NashBargainingSolution),可以作为多任务学习中的一种原则方法。本文提出Nash-MTL,推导了其收敛性的理论保证。1Introduction大部分MTL优化算法遵循一个通用方案。计算所有任务的梯度g
- [论文笔记] LLaVA
心心喵
论文笔记论文阅读
一、LLaVA论文中的主要工作和实验结果ExistingGap:之前的大部分工作都在做模态对齐,做图片的representationlearning,而没有针对ChatBot(多轮对话,指令理解)这种场景优化。Contribution:这篇工作已经在BLIP-2之后了,所以Image的理解能力不是LLaVA希望提升的重点,LLaVA是想提升多模态模型的Instruction-Followingab
- [论文笔记] LLM模型剪枝
心心喵
论文笔记论文阅读剪枝算法
AttentionIsAllYouNeedButYouDon’tNeedAllOfItForInferenceofLargeLanguageModelsLLaMA2在剪枝时,跳过ffn和跳过fulllayer的效果差不多。相比跳过ffn/fulllayer,跳过attentionlayer的影响会更小。跳过attentionlayer:7B/13B从100%参数剪枝到66%,平均指标只下降1.7~
- 【论文笔记】Training language models to follow instructions with human feedback B部分
Ctrl+Alt+L
大模型论文整理论文笔记论文阅读语言模型人工智能自然语言处理
TraininglanguagemodelstofollowinstructionswithhumanfeedbackB部分回顾一下第一代GPT-1:设计思路是“海量无标记文本进行无监督预训练+少量有标签文本有监督微调”范式;模型架构是基于Transformer的叠加解码器(掩码自注意力机制、残差、Layernorm);下游各种具体任务的适应是通过在模型架构的输出后增加线性权重WyW_{y}Wy实
- 【论文笔记】:LAYN:用于小目标检测的轻量级多尺度注意力YOLOv8网络
hhhhhhkkkyyy
论文阅读目标检测YOLO
背景针对嵌入式设备对目标检测算法的需求,大多数主流目标检测框架目前缺乏针对小目标的具体改进,然后提出的一种轻量级多尺度注意力YOLOv8小目标检测算法。小目标检测精度低的原因随着网络在训练过程中的加深,检测到的目标容易丢失边缘信息和灰度信息等。获得高级语义信息也较少,图像中可能存在一些噪声信息,误导训练网络学习不正确的特征。映射到原始图像的感受野的大小。当感受野相对较小时,空间结构特征保留较多,但
- 激光SLAM--(8) LeGO-LOAM论文笔记
lonely-stone
slam激光SLAM论文阅读
论文标题:LeGO-LOAM:LightweightandGround-OptimizedLidarOdometryandMappingonVariableTerrain应用在可变地形场景的轻量级的、并利用地面优化的LOAMABSTRACT轻量级的、基于地面优化的LOAM实时进行六自由度位姿估计,应用在地面的车辆上。强调应用在地面车辆上是因为在这里面要求雷达必须水平安装,而像LOAM和LIO-SA
- 论文浅尝 - AAAI2020 | 迈向建立多语言义元知识库:用于 BabelNet Synsets 义元预测...
开放知识图谱
机器学习人工智能知识图谱自然语言处理深度学习
论文笔记整理:潘锐,天津大学硕士。来源:AAAI2020链接:https://arxiv.org/pdf/1912.01795.pdf摘要义原被定义为人类语言的最小语义单位。义原知识库(KBs)是一种包含义原标注词汇的知识库,它已成功地应用于许多自然语言处理任务中。然而,现有的义原知识库建立在少数几种语言上,阻碍了它们的广泛应用。为此论文提出在多语种百科全书词典BabelNet的基础上建立一个统一
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- [论文笔记] eval-big-refactor lm_eval 每两个任务使用一个gpu,并保证端口未被使用
心心喵
论文笔记restful后端
1.5B在eval时候两个任务一个gpu是可以的。7B+在evalbelebele时会OOM,所以分配时脚本不同。eval_fast.py:importsubprocessimportargparseimportosimportsocket#参数列表task_name_list=["flores_mt_en_to_id","flores_mt_en_to_vi","flores_mt_en_to_
- 【论文笔记】Separating the “Chirp” from the “Chat”: Self-supervised Visual Grounding of Sound and Language
xhyu61
机器学习学习笔记论文笔记论文阅读
Abstract提出了DenseAV,一种新颖的双编码器接地架构,仅通过观看视频学习高分辨率、语义有意义和视听对齐的特征。在没有明确的本地化监督的情况下,DenseAV可以发现单词的"意义"和声音的"位置"。此外,它在没有监督的情况下自动发现并区分这两种类型的关联。DenseAV的定位能力源于一种新的多头特征聚合算子,该算子直接比较稠密的图像和音频表示进行对比学习。相比之下,许多其他学习"全局"音
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 【视觉三维重建】【论文笔记】Deblurring 3D Gaussian Splatting
CS_Zero
论文阅读
去模糊的3D高斯泼溅,看Demo比3D高斯更加精细,对场景物体细节的还原度更高,[官网](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)背景技术Volumetricrendering-basednerualfields:NeRF.Rasterizationrendering:3D-GS.Rasterization比vol
- [论文笔记] Transformer-XL
心心喵
论文笔记transformer深度学习人工智能
这篇论文提出的Transformer-XL主要是针对Transformer在解决长依赖问题中受到固定长度上下文的限制,如Bert采用的Transformer最大上下文为512(其中是因为计算资源的限制,不是因为位置编码,因为使用的是绝对位置编码正余弦编码)。Transformer-XL能学习超过固定长度的依赖性,而不破坏时间一致性。它由段级递归机制和一种新的位置编码方案组成。该方法不仅能够捕获长期
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 多模态相关论文笔记
靖待
大模型人工智能论文阅读
(cilp)LearningTransferableVisualModelsFromNaturalLanguageSupervision从自然语言监督中学习可迁移的视觉模型openAI2021年2月48页PDFCODECLIP(ContrastiveLanguage-ImagePre-Training)对比语言图像预训练模型引言它比ImageNet模型效果更好,计算效率更高。尤其是zero-sho
- 【论文笔记 · PFM】Lag-Llama: Towards Foundation Models for Time Series Forecasting
lokol.
论文笔记论文阅读llama
Lag-Llama:TowardsFoundationModelsforTimeSeriesForecasting摘要本文提出Lag-Llama,在大量时间序列数据上训练的通用单变量概率时间序列预测模型。模型在分布外泛化能力上取得较好效果。模型使用平滑破坏幂律(smoothlybrokenpower-laws)。介绍目前任务主要集中于在相同域的数据上训练模型。当前已有的大规模通用模型在大规模不同数
- 【论文笔记】Unsupervised Learning of Video Representations using LSTMs
奶茶不加糖え
lstm深度学习自然语言处理
摘要翻译我们使用长短时记忆(LongShortTermMemory,LSTM)网络来学习视频序列的表征。我们的模型使用LSTM编码器将输入序列映射到一个固定长度的表征向量。之后我们用一个或多个LSTM解码器解码这个表征向量来实现不同的任务,比如重建输入序列、预测未来序列。我们对两种输入序列——原始的图像小块和预训练卷积网络提取的高层表征向量——都做了实验。我们探索不同的设计选择,例如解码器的LST
- MOSSE算法论文笔记以及代码解释
five days
计算机视觉深度学习机器学习
论文《VisualObjectTrackingusingAdaptiveCorrelationFilters》代码github1.论文idea提出以滤波器求相关的形式,找到最大响应处的位置,也就是我们所跟踪的目标的中心,进而不断的更新跟踪目标框和滤波器。2.跟踪策略如图,根据初始帧圈出的目标框训练滤波器,最大响应处为目标框的中心点,当移动到下一帧时,根据滤波器求相关的算法获得最大响应值,进而得出下
- Attention Is All Your Need论文笔记
xiaoyan_lu
论文笔记论文阅读
论文解决了什么问题?提出了一个新的简单网络架构——transformer,仅仅是基于注意力机制,完全免去递推和卷积,使得神经网络训练地速度极大地提高。Weproposeanewsimplenetworkarchitecture,theTransformer,basedsolelyonattentionmechanisms,dispensingwithrecurrenceandconvolution
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- [论文总结] 深度学习在农业领域应用论文笔记12
落痕的寒假
论文总结深度学习论文阅读人工智能
文章目录1.3D-ZeF:A3DZebrafishTrackingBenchmarkDataset(CVPR,2020)摘要背景相关研究所提出的数据集方法和结果个人总结2.Automatedflowerclassificationoveralargenumberofclasses(ComputerVision,Graphics&ImageProcessing,2008)摘要背景分割与分类数据集和实
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/