代理网关设计与实现(基于NETTY)

简介:本文重点在代理网关本身的设计与实现,而非代理资源的管理与维护。

代理网关设计与实现(基于NETTY)_第1张图片

作者 | 新然
来源 | 阿里技术公众号

一 问题背景

  • 平台端购置一批裸代理,来做广告异地展现审核。从外部购置的代理,使用方式为:
  • 通过给定的HTTP 的 API 提取代理 IP:PORT,返回的结果会给出代理的有效时长 3~5 分钟,以及代理所属地域;

从提取的代理中,选取指定地域,添加认证信息,请求获取结果;

本文设计实现一个通过的代理网关:

  • 管理维护代理资源,并做代理的认证鉴权;
  • 对外暴露统一的代理入口,而非动态变化的代理IP:PORT;
  • 流量过滤及限流,比如:静态资源不走代理;

本文重点在代理网关本身的设计与实现,而非代理资源的管理与维护。

注:本文包含大量可执行的JAVA代码以解释代理相关的原理

二 技术路线

本文的技术路线。在实现代理网关之前,首先介绍下代理相关的原理及如何实现

  • 透明代理;
  • 非透明代理;
  • 透明的上游代理;
  • 非透明的上游代理;

最后,本文要构建代理网关,本质上就是一个非透明的上游代理,并给出详细的设计与实现。

1 透明代理

透明代理是代理网关的基础,本文采用JAVA原生的NIO进行详细介绍。在实现代理网关时,实际使用的为NETTY框架。原生NIO的实现对理解NETTY的实现有帮助。

透明代理设计三个交互方,客户端、代理服务、服务端,其原理是:

代理网关设计与实现(基于NETTY)_第2张图片

  • 代理服务在收到连接请求时,判定:如果是CONNECT请求,需要回应代理连接成功消息到客户端;
  • CONNECT请求回应结束后,代理服务需要连接到CONNECT指定的远程服务器,然后直接转发客户端和远程服务通信;
  • 代理服务在收到非CONNECT请求时,需要解析出请求的远程服务器,然后直接转发客户端和远程服务通信;

需要注意的点是:

  • 通常HTTPS请求,在通过代理前,会发送CONNECT请求;连接成功后,会在信道上进行加密通信的握手协议;因此连接远程的时机是在CONNECT请求收到时,因为此后是加密数据;
  • 透明代理在收到CONNECT请求时,不需要传递到远程服务(远程服务不识别此请求);
  • 透明代理在收到非CONNECT请求时,要无条件转发;

完整的透明代理的实现不到约300行代码,完整摘录如下:

@Slf4j
public class SimpleTransProxy {

    public static void main(String[] args) throws IOException {
        int port = 8006;
        ServerSocketChannel localServer = ServerSocketChannel.open();
        localServer.bind(new InetSocketAddress(port));
        Reactor reactor = new Reactor();
        // REACTOR线程
        GlobalThreadPool.REACTOR_EXECUTOR.submit(reactor::run);

        // WORKER单线程调试
        while (localServer.isOpen()) {
            // 此处阻塞等待连接
            SocketChannel remoteClient = localServer.accept();

            // 工作线程
            GlobalThreadPool.WORK_EXECUTOR.submit(new Runnable() {
                @SneakyThrows
                @Override
                public void run() {
                    // 代理到远程
                    SocketChannel remoteServer = new ProxyHandler().proxy(remoteClient);

                    // 透明传输
                    reactor.pipe(remoteClient, remoteServer)
                            .pipe(remoteServer, remoteClient);
                }
            });
        }
    }
}

@Data
class ProxyHandler {
    private String method;
    private String host;
    private int port;
    private SocketChannel remoteServer;
    private SocketChannel remoteClient;

    /**
     * 原始信息
     */
    private List buffers = new ArrayList<>();
    private StringBuilder stringBuilder = new StringBuilder();

    /**
     * 连接到远程
     * @param remoteClient
     * @return
     * @throws IOException
     */
    public SocketChannel proxy(SocketChannel remoteClient) throws IOException {
        this.remoteClient = remoteClient;
        connect();
        return this.remoteServer;
    }

    public void connect() throws IOException {
        // 解析METHOD, HOST和PORT
        beforeConnected();

        // 链接REMOTE SERVER
        createRemoteServer();

        // CONNECT请求回应,其他请求WRITE THROUGH
        afterConnected();
    }

    protected void beforeConnected() throws IOException {
        // 读取HEADER
        readAllHeader();

        // 解析HOST和PORT
        parseRemoteHostAndPort();
    }

    /**
     * 创建远程连接
     * @throws IOException
     */
    protected void createRemoteServer() throws IOException {
        remoteServer = SocketChannel.open(new InetSocketAddress(host, port));
    }

    /**
     * 连接建立后预处理
     * @throws IOException
     */
    protected void afterConnected() throws IOException {
        // 当CONNECT请求时,默认写入200到CLIENT
        if ("CONNECT".equalsIgnoreCase(method)) {
            // CONNECT默认为443端口,根据HOST再解析
            remoteClient.write(ByteBuffer.wrap("HTTP/1.0 200 Connection Established\r\nProxy-agent: nginx\r\n\r\n".getBytes()));
        } else {
            writeThrouth();
        }
    }

    protected void writeThrouth() {
        buffers.forEach(byteBuffer -> {
            try {
                remoteServer.write(byteBuffer);
            } catch (IOException e) {
                e.printStackTrace();
            }
        });
    }

    /**
     * 读取请求内容
     * @throws IOException
     */
    protected void readAllHeader() throws IOException {
        while (true) {
            ByteBuffer clientBuffer = newByteBuffer();
            int read = remoteClient.read(clientBuffer);
            clientBuffer.flip();
            appendClientBuffer(clientBuffer);
            if (read < clientBuffer.capacity()) {
                break;
            }
        }
    }

    /**
     * 解析出HOST和PROT
     * @throws IOException
     */
    protected void parseRemoteHostAndPort() throws IOException {
        // 读取第一批,获取到METHOD
        method = parseRequestMethod(stringBuilder.toString());

        // 默认为80端口,根据HOST再解析
        port = 80;
        if ("CONNECT".equalsIgnoreCase(method)) {
            port = 443;
        }

        this.host = parseHost(stringBuilder.toString());

        URI remoteServerURI = URI.create(host);
        host = remoteServerURI.getHost();

        if (remoteServerURI.getPort() > 0) {
            port = remoteServerURI.getPort();
        }
    }

    protected void appendClientBuffer(ByteBuffer clientBuffer) {
        buffers.add(clientBuffer);
        stringBuilder.append(new String(clientBuffer.array(), clientBuffer.position(), clientBuffer.limit()));
    }

    protected static ByteBuffer newByteBuffer() {
        // buffer必须大于7,保证能读到method
        return ByteBuffer.allocate(128);
    }

    private static String parseRequestMethod(String rawContent) {
        // create uri
        return rawContent.split("\r\n")[0].split(" ")[0];
    }

    private static String parseHost(String rawContent) {
        String[] headers = rawContent.split("\r\n");
        String host = "host:";
        for (String header : headers) {
            if (header.length() > host.length()) {
                String key = header.substring(0, host.length());
                String value = header.substring(host.length()).trim();
                if (host.equalsIgnoreCase(key)) {
                    if (!value.startsWith("http://") && !value.startsWith("https://")) {
                        value = "http://" + value;
                    }
                    return value;
                }
            }
        }
        return "";
    }

}

@Slf4j
@Data
class Reactor {

    private Selector selector;

    private volatile boolean finish = false;

    @SneakyThrows
    public Reactor() {
        selector = Selector.open();
    }

    @SneakyThrows
    public Reactor pipe(SocketChannel from, SocketChannel to) {
        from.configureBlocking(false);
        from.register(selector, SelectionKey.OP_READ, new SocketPipe(this, from, to));
        return this;
    }

    @SneakyThrows
    public void run() {
        try {
            while (!finish) {
                if (selector.selectNow() > 0) {
                    Iterator it = selector.selectedKeys().iterator();
                    while (it.hasNext()) {
                        SelectionKey selectionKey = it.next();
                        if (selectionKey.isValid() && selectionKey.isReadable()) {
                            ((SocketPipe) selectionKey.attachment()).pipe();
                        }
                        it.remove();
                    }
                }
            }
        } finally {
            close();
        }
    }

    @SneakyThrows
    public synchronized void close() {
        if (finish) {
            return;
        }
        finish = true;
        if (!selector.isOpen()) {
            return;
        }
        for (SelectionKey key : selector.keys()) {
            closeChannel(key.channel());
            key.cancel();
        }
        if (selector != null) {
            selector.close();
        }
    }

    public void cancel(SelectableChannel channel) {
        SelectionKey key = channel.keyFor(selector);
        if (Objects.isNull(key)) {
            return;
        }
        key.cancel();
    }

    @SneakyThrows
    public void closeChannel(Channel channel) {
        SocketChannel socketChannel = (SocketChannel)channel;
        if (socketChannel.isConnected() && socketChannel.isOpen()) {
            socketChannel.shutdownOutput();
            socketChannel.shutdownInput();
        }
        socketChannel.close();
    }
}

@Data
@AllArgsConstructor
class SocketPipe {

    private Reactor reactor;

    private SocketChannel from;

    private SocketChannel to;

    @SneakyThrows
    public void pipe() {
        // 取消监听
        clearInterestOps();

        GlobalThreadPool.PIPE_EXECUTOR.submit(new Runnable() {
            @SneakyThrows
            @Override
            public void run() {
                int totalBytesRead = 0;
                ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
                while (valid(from) && valid(to)) {
                    byteBuffer.clear();
                    int bytesRead = from.read(byteBuffer);
                    totalBytesRead = totalBytesRead + bytesRead;
                    byteBuffer.flip();
                    to.write(byteBuffer);
                    if (bytesRead < byteBuffer.capacity()) {
                        break;
                    }
                }
                if (totalBytesRead < 0) {
                    reactor.closeChannel(from);
                    reactor.cancel(from);
                } else {
                    // 重置监听
                    resetInterestOps();
                }
            }
        });
    }

    protected void clearInterestOps() {
        from.keyFor(reactor.getSelector()).interestOps(0);
        to.keyFor(reactor.getSelector()).interestOps(0);
    }

    protected void resetInterestOps() {
        from.keyFor(reactor.getSelector()).interestOps(SelectionKey.OP_READ);
        to.keyFor(reactor.getSelector()).interestOps(SelectionKey.OP_READ);
    }

    private boolean valid(SocketChannel channel) {
        return channel.isConnected() && channel.isRegistered() && channel.isOpen();
    }
}

以上,借鉴NETTY:

  • 首先初始化REACTOR线程,然后开启代理监听,当收到代理请求时处理。
  • 代理服务在收到代理请求时,首先做代理的预处理,然后又SocketPipe做客户端和远程服务端双向转发。
  • 代理预处理,首先读取第一个HTTP请求,解析出METHOD, HOST, PORT。
  • 如果是CONNECT请求,发送回应Connection Established,然后连接远程服务端,并返回SocketChannel
  • 如果是非CONNECT请求,连接远程服务端,写入原始请求,并返回SocketChannel
  • SocketPipe在客户端和远程服务端,做双向的转发;其本身是将客户端和服务端的SocketChannel注册到REACTOR
  • REACTOR在监测到READABLE的CHANNEL,派发给SocketPipe做双向转发。

测试

代理的测试比较简单,指向代码后,代理服务监听8006端口,此时:

curl -x 'localhost:8006' http://httpbin.org/get测试HTTP请求

curl -x 'localhost:8006' https://httpbin.org/get测试HTTPS请求

注意,此时代理服务代理了HTTPS请求,但是并不需要-k选项,指示非安全的代理。因为代理服务本身并没有作为一个中间人,并没有解析出客户端和远程服务端通信的内容。在非透明代理时,需要解决这个问题。

2 非透明代理

非透明代理,需要解析出客户端和远程服务端传输的内容,并做相应的处理。

当传输为HTTP协议时,SocketPipe传输的数据即为明文的数据,可以拦截后直接做处理。

当传输为HTTPS协议时,SocketPipe传输的有效数据为加密数据,并不能透明处理。

另外,无论是传输的HTTP协议还是HTTPS协议,SocketPipe读到的都为非完整的数据,需要做聚批的处理。

  • SocketPipe聚批问题,可以采用类似BufferedInputStream对InputStream做Decorate的模式来实现,相对比较简单;详细可以参考NETTY的HttpObjectAggregator;
  • HTTPS原始请求和结果数据的加密和解密的处理,需要实现的NIO的SOCKET CHANNEL;

SslSocketChannel封装原理

考虑到目前JDK自带的NIO的SocketChannel并不支持SSL;已有的SSLSocket是阻塞的OIO。如图:

代理网关设计与实现(基于NETTY)_第3张图片

可以看出

  • 每次入站数据和出站数据都需要 SSL SESSION 做握手;
  • 入站数据做解密,出站数据做加密;
  • 握手,数据加密和数据解密是统一的一套状态机;

代理网关设计与实现(基于NETTY)_第4张图片

以下,代码实现 SslSocketChannel

public class SslSocketChannel {

    /**
     * 握手加解密需要的四个存储
     */
    protected ByteBuffer myAppData; // 明文
    protected ByteBuffer myNetData; // 密文
    protected ByteBuffer peerAppData; // 明文
    protected ByteBuffer peerNetData; // 密文

    /**
     * 握手加解密过程中用到的异步执行器
     */
    protected ExecutorService executor = Executors.newSingleThreadExecutor();

    /**
     * 原NIO 的 CHANNEL
     */
    protected SocketChannel socketChannel;

    /**
     * SSL 引擎
     */
    protected SSLEngine engine;

    public SslSocketChannel(SSLContext context, SocketChannel socketChannel, boolean clientMode) throws Exception {
        // 原始的NIO SOCKET
        this.socketChannel = socketChannel;

        // 初始化BUFFER
        SSLSession dummySession = context.createSSLEngine().getSession();
        myAppData = ByteBuffer.allocate(dummySession.getApplicationBufferSize());
        myNetData = ByteBuffer.allocate(dummySession.getPacketBufferSize());
        peerAppData = ByteBuffer.allocate(dummySession.getApplicationBufferSize());
        peerNetData = ByteBuffer.allocate(dummySession.getPacketBufferSize());
        dummySession.invalidate();

        engine = context.createSSLEngine();
        engine.setUseClientMode(clientMode);
        engine.beginHandshake();
    }

    /**
     * 参考 https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
     * 实现的 SSL 的握手协议
     * @return
     * @throws IOException
     */
    protected boolean doHandshake() throws IOException {
        SSLEngineResult result;
        HandshakeStatus handshakeStatus;

        int appBufferSize = engine.getSession().getApplicationBufferSize();
        ByteBuffer myAppData = ByteBuffer.allocate(appBufferSize);
        ByteBuffer peerAppData = ByteBuffer.allocate(appBufferSize);
        myNetData.clear();
        peerNetData.clear();

        handshakeStatus = engine.getHandshakeStatus();
        while (handshakeStatus != HandshakeStatus.FINISHED && handshakeStatus != HandshakeStatus.NOT_HANDSHAKING) {
            switch (handshakeStatus) {
                case NEED_UNWRAP:
                    if (socketChannel.read(peerNetData) < 0) {
                        if (engine.isInboundDone() && engine.isOutboundDone()) {
                            return false;
                        }
                        try {
                            engine.closeInbound();
                        } catch (SSLException e) {
                            log.debug("收到END OF STREAM,关闭连接.", e);
                        }
                        engine.closeOutbound();
                        handshakeStatus = engine.getHandshakeStatus();
                        break;
                    }
                    peerNetData.flip();
                    try {
                        result = engine.unwrap(peerNetData, peerAppData);
                        peerNetData.compact();
                        handshakeStatus = result.getHandshakeStatus();
                    } catch (SSLException sslException) {
                        engine.closeOutbound();
                        handshakeStatus = engine.getHandshakeStatus();
                        break;
                    }
                    switch (result.getStatus()) {
                        case OK:
                            break;
                        case BUFFER_OVERFLOW:
                            peerAppData = enlargeApplicationBuffer(engine, peerAppData);
                            break;
                        case BUFFER_UNDERFLOW:
                            peerNetData = handleBufferUnderflow(engine, peerNetData);
                            break;
                        case CLOSED:
                            if (engine.isOutboundDone()) {
                                return false;
                            } else {
                                engine.closeOutbound();
                                handshakeStatus = engine.getHandshakeStatus();
                                break;
                            }
                        default:
                            throw new IllegalStateException("无效的握手状态: " + result.getStatus());
                    }
                    break;
                case NEED_WRAP:
                    myNetData.clear();
                    try {
                        result = engine.wrap(myAppData, myNetData);
                        handshakeStatus = result.getHandshakeStatus();
                    } catch (SSLException sslException) {
                        engine.closeOutbound();
                        handshakeStatus = engine.getHandshakeStatus();
                        break;
                    }
                    switch (result.getStatus()) {
                        case OK :
                            myNetData.flip();
                            while (myNetData.hasRemaining()) {
                                socketChannel.write(myNetData);
                            }
                            break;
                        case BUFFER_OVERFLOW:
                            myNetData = enlargePacketBuffer(engine, myNetData);
                            break;
                        case BUFFER_UNDERFLOW:
                            throw new SSLException("加密后消息内容为空,报错");
                        case CLOSED:
                            try {
                                myNetData.flip();
                                while (myNetData.hasRemaining()) {
                                    socketChannel.write(myNetData);
                                }
                                peerNetData.clear();
                            } catch (Exception e) {
                                handshakeStatus = engine.getHandshakeStatus();
                            }
                            break;
                        default:
                            throw new IllegalStateException("无效的握手状态: " + result.getStatus());
                    }
                    break;
                case NEED_TASK:
                    Runnable task;
                    while ((task = engine.getDelegatedTask()) != null) {
                        executor.execute(task);
                    }
                    handshakeStatus = engine.getHandshakeStatus();
                    break;
                case FINISHED:
                    break;
                case NOT_HANDSHAKING:
                    break;
                default:
                    throw new IllegalStateException("无效的握手状态: " + handshakeStatus);
            }
        }

        return true;
    }

    /**
     * 参考 https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
     * 实现的 SSL 的传输读取协议
     * @param consumer
     * @throws IOException
     */
    public void read(Consumer consumer) throws IOException {
        // BUFFER初始化
        peerNetData.clear();
        int bytesRead = socketChannel.read(peerNetData);
        if (bytesRead > 0) {
            peerNetData.flip();
            while (peerNetData.hasRemaining()) {
                peerAppData.clear();
                SSLEngineResult result = engine.unwrap(peerNetData, peerAppData);
                switch (result.getStatus()) {
                    case OK:
                        log.debug("收到远程的返回结果消息为:" + new String(peerAppData.array(), 0, peerAppData.position()));
                        consumer.accept(peerAppData);
                        peerAppData.flip();
                        break;
                    case BUFFER_OVERFLOW:
                        peerAppData = enlargeApplicationBuffer(engine, peerAppData);
                        break;
                    case BUFFER_UNDERFLOW:
                        peerNetData = handleBufferUnderflow(engine, peerNetData);
                        break;
                    case CLOSED:
                        log.debug("收到远程连接关闭消息.");
                        closeConnection();
                        return;
                    default:
                        throw new IllegalStateException("无效的握手状态: " + result.getStatus());
                }
            }
        } else if (bytesRead < 0) {
            log.debug("收到END OF STREAM,关闭连接.");
            handleEndOfStream();
        }
    }

    public void write(String message) throws IOException {
        write(ByteBuffer.wrap(message.getBytes()));
    }

    /**
     * 参考 https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
     * 实现的 SSL 的传输写入协议
     * @param message
     * @throws IOException
     */
    public void write(ByteBuffer message) throws IOException {
        myAppData.clear();
        myAppData.put(message);
        myAppData.flip();
        while (myAppData.hasRemaining()) {
            myNetData.clear();
            SSLEngineResult result = engine.wrap(myAppData, myNetData);
            switch (result.getStatus()) {
                case OK:
                    myNetData.flip();
                    while (myNetData.hasRemaining()) {
                        socketChannel.write(myNetData);
                    }
                    log.debug("写入远程的消息为: {}", message);
                    break;
                case BUFFER_OVERFLOW:
                    myNetData = enlargePacketBuffer(engine, myNetData);
                    break;
                case BUFFER_UNDERFLOW:
                    throw new SSLException("加密后消息内容为空.");
                case CLOSED:
                    closeConnection();
                    return;
                default:
                    throw new IllegalStateException("无效的握手状态: " + result.getStatus());
            }
        }
    }

    /**
     * 关闭连接
     * @throws IOException
     */
    public void closeConnection() throws IOException  {
        engine.closeOutbound();
        doHandshake();
        socketChannel.close();
        executor.shutdown();
    }

    /**
     * END OF STREAM(-1)默认是关闭连接
     * @throws IOException
     */
    protected void handleEndOfStream() throws IOException  {
        try {
            engine.closeInbound();
        } catch (Exception e) {
            log.error("END OF STREAM 关闭失败.", e);
        }
        closeConnection();
    }

}

以上:

  • 基于 SSL 协议,实现统一的握手动作;
  • 分别实现读取的解密,和写入的加密方法;
  • 将 SslSocketChannel 实现为 SocketChannel的Decorator;

SslSocketChannel测试服务端

基于以上封装,简单测试服务端如下

@Slf4j
public class NioSslServer {

    public static void main(String[] args) throws Exception {
        NioSslServer sslServer = new NioSslServer("127.0.0.1", 8006);
        sslServer.start();
        // 使用 curl -vv -k 'https://localhost:8006' 连接
    }

    private SSLContext context;

    private Selector selector;

    public NioSslServer(String hostAddress, int port) throws Exception {
        // 初始化SSL Context
        context = serverSSLContext();

        // 注册监听器
        selector = SelectorProvider.provider().openSelector();
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false);
        serverSocketChannel.socket().bind(new InetSocketAddress(hostAddress, port));
        serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
    }

    public void start() throws Exception {

        log.debug("等待连接中.");

        while (true) {
            selector.select();
            Iterator selectedKeys = selector.selectedKeys().iterator();
            while (selectedKeys.hasNext()) {
                SelectionKey key = selectedKeys.next();
                selectedKeys.remove();
                if (!key.isValid()) {
                    continue;
                }
                if (key.isAcceptable()) {
                    accept(key);
                } else if (key.isReadable()) {
                    ((SslSocketChannel)key.attachment()).read(buf->{});
                    // 直接回应一个OK
                    ((SslSocketChannel)key.attachment()).write("HTTP/1.1 200 OK\r\nContent-Type: text/plain\r\n\r\nOK\r\n\r\n");
                    ((SslSocketChannel)key.attachment()).closeConnection();
                }
            }
        }
    }

    private void accept(SelectionKey key) throws Exception {
        log.debug("接收新的请求.");

        SocketChannel socketChannel = ((ServerSocketChannel)key.channel()).accept();
        socketChannel.configureBlocking(false);

        SslSocketChannel sslSocketChannel = new SslSocketChannel(context, socketChannel, false);
        if (sslSocketChannel.doHandshake()) {
            socketChannel.register(selector, SelectionKey.OP_READ, sslSocketChannel);
        } else {
            socketChannel.close();
            log.debug("握手失败,关闭连接.");
        }
    }
}

以上:

  • 由于是NIO,简单的测试需要用到NIO的基础组件Selector进行测试;
  • 首先初始化ServerSocketChannel,监听8006端口;
  • 接收到请求后,将SocketChannel封装为SslSocketChannel,注册到Selector
  • 接收到数据后,通过SslSocketChannel做read和write;

SslSocketChannel测试客户端

基于以上服务端封装,简单测试客户端如下

@Slf4j
public class NioSslClient {

    public static void main(String[] args) throws Exception {
        NioSslClient sslClient = new NioSslClient("httpbin.org", 443);
        sslClient.connect();
        // 请求 'https://httpbin.org/get'
    }

    private String remoteAddress;

    private int port;

    private SSLEngine engine;

    private SocketChannel socketChannel;

    private SSLContext context;

    /**
     * 需要远程的HOST和PORT
     * @param remoteAddress
     * @param port
     * @throws Exception
     */
    public NioSslClient(String remoteAddress, int port) throws Exception {
        this.remoteAddress = remoteAddress;
        this.port = port;

        context = clientSSLContext();
        engine = context.createSSLEngine(remoteAddress, port);
        engine.setUseClientMode(true);
    }

    public boolean connect() throws Exception {
        socketChannel = SocketChannel.open();
        socketChannel.configureBlocking(false);
        socketChannel.connect(new InetSocketAddress(remoteAddress, port));
        while (!socketChannel.finishConnect()) {
            // 通过REACTOR,不会出现等待情况
            //log.debug("连接中..");
        }

        SslSocketChannel sslSocketChannel = new SslSocketChannel(context, socketChannel, true);
        sslSocketChannel.doHandshake();

        // 握手完成后,开启SELECTOR
        Selector selector = SelectorProvider.provider().openSelector();
        socketChannel.register(selector, SelectionKey.OP_READ, sslSocketChannel);

        // 写入请求
        sslSocketChannel.write("GET /get HTTP/1.1\r\n"
            + "Host: httpbin.org:443\r\n"
            + "User-Agent: curl/7.62.0\r\n"
            + "Accept: */*\r\n"
            + "\r\n");

        // 读取结果
        while (true) {
            selector.select();
            Iterator selectedKeys = selector.selectedKeys().iterator();
            while (selectedKeys.hasNext()) {
                SelectionKey key = selectedKeys.next();
                selectedKeys.remove();
                if (key.isValid() && key.isReadable()) {
                    ((SslSocketChannel)key.attachment()).read(buf->{
                        log.info("{}", new String(buf.array(), 0, buf.position()));
                    });
                    ((SslSocketChannel)key.attachment()).closeConnection();
                    return true;
                }
            }
        }
    }
}

以上:

客户端的封装测试,是为了验证封装 SSL 协议双向都是OK的,
在后文的非透明上游代理中,会同时使用 SslSocketChannel做服务端和客户端
以上封装与服务端封装类似,不同的是初始化 SocketChannel,做connect而非bind

总结

以上:

  • 非透明代理需要拿到完整的请求数据,可以通过 Decorator模式,聚批实现;
  • 非透明代理需要拿到解密后的HTTPS请求数据,可以通过SslSocketChannel对原始的SocketChannel做封装实现;
  • 最后,拿到请求后,做相应的处理,最终实现非透明的代理。

3 透明上游代理

透明上游代理相比透明代理要简单,区别是

  • 透明代理需要响应 CONNECT请求,透明上游代理不需要,直接转发即可;
  • 透明代理需要解析CONNECT请求中的HOST和PORT,并连接服务端;透明上游代理只需要连接下游代理的IP:PORT,直接转发请求即可;
  • 透明的上游代理,只是一个简单的SocketChannel管道;确定下游的代理服务端,连接转发请求;

只需要对透明代理做以上简单的修改,即可实现透明的上游代理。

4 非透明上游代理

非透明的上游代理,相比非透明的代理要复杂一些

代理网关设计与实现(基于NETTY)_第5张图片

以上,分为四个组件:客户端,代理服务(ServerHandler),代理服务(ClientHandler),服务端

  • 如果是HTTP的请求,数据直接通过 客户端<->ServerHandler<->ClientHandler<->服务端,代理网关只需要做简单的请求聚批,就可以应用相应的管理策略;
  • 如果是HTTPS请求,代理作为客户端和服务端的中间人,只能拿到加密的数据;因此,代理网关需要作为HTTPS的服务方与客户端通信;然后作为HTTPS的客户端与服务端通信;
  • 代理作为HTTPS服务方时,需要考虑到其本身是个非透明的代理,需要实现非透明代理相关的协议;
  • 代理作为HTTPS客户端时,需要考虑到其下游是个透明的代理,真正的服务方是客户端请求的服务方;

三 设计与实现

本文需要构建的是非透明上游代理,以下采用NETTY框架给出详细的设计实现。上文将统一代理网关分为两大部分,ServerHandler和ClientHandler,以下

  • 介绍代理网关服务端相关实现;
  • 介绍代理网关客户端相关实现;

1 代理网关服务端

主要包括

  • 初始化代理网关服务端
  • 初始化服务端处理器
  • 服务端协议升级与处理

初始化代理网关服务

public void start() {
    HookedExecutors.newSingleThreadExecutor().submit(() ->{
        log.info("开始启动代理服务器,监听端口:{}", auditProxyConfig.getProxyServerPort());
        EventLoopGroup bossGroup = new NioEventLoopGroup(auditProxyConfig.getBossThreadCount());
        EventLoopGroup workerGroup = new NioEventLoopGroup(auditProxyConfig.getWorkThreadCount());
        try {
            ServerBootstrap b = new ServerBootstrap();
            b.group(bossGroup, workerGroup)
                .channel(NioServerSocketChannel.class)
                .handler(new LoggingHandler(LogLevel.DEBUG))
                .childHandler(new ServerChannelInitializer(auditProxyConfig))
                .bind(auditProxyConfig.getProxyServerPort()).sync().channel().closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("代理服务器被中断.", e);
            Thread.currentThread().interrupt();
        } finally {
            bossGroup.shutdownGracefully();
            workerGroup.shutdownGracefully();
        }
    });
}

代理网关初始化相对简单,

  • bossGroup线程组,负责接收请求
  • workerGroup线程组,负责处理接收的请求数据,具体处理逻辑封装在ServerChannelInitializer中。

代理网关服务的请求处理器在 ServerChannelInitializer中定义为

@Override
  protected void initChannel(SocketChannel ch) throws Exception {
      ch.pipeline()
          .addLast(new HttpRequestDecoder())
          .addLast(new HttpObjectAggregator(auditProxyConfig.getMaxRequestSize()))
          .addLast(new ServerChannelHandler(auditProxyConfig));
  }

首先解析HTTP请求,然后做聚批的处理,最后ServerChannelHandler实现代理网关协议;

代理网关协议:

  • 判定是否是CONNECT请求,如果是,会存储CONNECT请求;暂停读取,发送代
  • 理成功的响应,并在回应成功后,升级协议;
  • 升级引擎,本质上是采用SslSocketChannel对原SocketChannel做透明的封装;
  • 最后根据CONNECT请求连接远程服务端;

详细实现为:

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
     FullHttpRequest request = (FullHttpRequest)msg;

     try {
         if (isConnectRequest(request)) {
             // CONNECT 请求,存储待处理
             saveConnectRequest(ctx, request);

             // 禁止读取
             ctx.channel().config().setAutoRead(false);

             // 发送回应
             connectionEstablished(ctx, ctx.newPromise().addListener(future -> {
                 if (future.isSuccess()) {
                     // 升级
                     if (isSslRequest(request) && !isUpgraded(ctx)) {
                         upgrade(ctx);
                     }

                     // 开放消息读取
                     ctx.channel().config().setAutoRead(true);
                     ctx.read();
                 }
             }));

         } else {
             // 其他请求,判定是否已升级
             if (!isUpgraded(ctx)) {

                 // 升级引擎
                 upgrade(ctx);
             }

             // 连接远程
             connectRemote(ctx, request);
         }
     } finally {
         ctx.fireChannelRead(msg);
     }
 }

2 代理网关客户端

代理网关服务端需要连接远程服务,进入代理网关客户端部分。

代理网关客户端初始化:

 /**
  * 初始化远程连接
  * @param ctx
  * @param httpRequest
  */
 protected void connectRemote(ChannelHandlerContext ctx, FullHttpRequest httpRequest) {
     Bootstrap b = new Bootstrap();
     b.group(ctx.channel().eventLoop()) // use the same EventLoop
         .channel(ctx.channel().getClass())
         .handler(new ClientChannelInitializer(auditProxyConfig, ctx, safeCopy(httpRequest)));

     // 动态连接代理
     FullHttpRequest originRequest = ctx.channel().attr(CONNECT_REQUEST).get();
     if (originRequest == null) {
         originRequest = httpRequest;
     }
     ChannelFuture cf = b.connect(new InetSocketAddress(calculateHost(originRequest), calculatePort(originRequest)));
     Channel cch = cf.channel();
     ctx.channel().attr(CLIENT_CHANNEL).set(cch);    
 }

以上:

  • 复用代理网关服务端的workerGroup线程组;
  • 请求和结果的处理封装在ClientChannelInitializer;
  • 连接的远程服务端的HOST和PORT在服务端收到的请求中可以解析到。

代理网关客户端的处理器的初始化逻辑:

@Override
  protected void initChannel(SocketChannel ch) throws Exception {
      SocketAddress socketAddress = calculateProxy();
      if (!Objects.isNull(socketAddress)) {
          ch.pipeline().addLast(new HttpProxyHandler(calculateProxy(), auditProxyConfig.getUserName(), auditProxyConfig
              .getPassword()));
      }
      if (isSslRequest()) {
          String host = host();
          int port = port();
          if (StringUtils.isNoneBlank(host) && port > 0) {
              ch.pipeline().addLast(new SslHandler(sslEngine(host, port)));
          }
      }
      ch.pipeline().addLast(new ClientChannelHandler(clientContext, httpRequest));
  }

以上:

  • 如果下游是代理,那么会采用HttpProxyHandler,经由下游代理与远程服务端通信;
  • 如果当前需要升级为SSL协议,会对SocketChannel做透明的封装,实现SSL通信。
  • 最后,ClientChannelHandler只是简单消息的转发;唯一的不同是,由于代理网关拦截了第一个请求,此时需要将拦截的请求,转发到服务端。

四 其他问题

代理网关实现可能面临的问题:

1 内存问题

代理通常面临的问题是OOM。本文在实现代理网关时保证内存中缓存时当前正在处理的HTTP/HTTPS请求体。内存使用的上限理论上为实时处理的请求数量*请求体的平均大小,HTTP/HTTPS的请求结果,直接使用堆外内存,零拷贝转发。

2 性能问题

性能问题不应提早考虑。本文使用NETTY框架实现的代理网关,内部大量使用堆外内存,零拷贝转发,避免了性能问题。

代理网关一期上线后曾面临一个长连接导致的性能问题,

  • CLIENT和SERVER建立TCP长连接后(比如,TCP心跳检测),通常要么是CLIENT关闭TCP连接,或者是SERVER关闭;
  • 如果双方长时间占用TCP连接资源而不关闭,就会导致SOCKET资源泄漏;现象是:CPU资源爆满,处理空闲连接;新连接无法建立;

使用IdleStateHandler定时监控空闲的TCP连接,强制关闭;解决了该问题。

五 总结

本文聚焦于统一代理网关的核心,详细介绍了代理相关的技术原理。

代理网关的管理部分,可以在ServerHandler部分维护,也可以在ClientHandler部分维护;

  • ServerHandler可以拦截转换请求
  • ClientHanlder可控制请求的出口

注:本文使用Netty的零拷贝;存储请求以解析处理;但并未实现对RESPONSE的处理;也就是RESPONSE是直接通过网关,此方面避免了常见的代理实现,内存泄漏OOM相关问题;

最后,本文实现代理网关后,针对代理的资源和流经代理网关的请求做了相应的控制,主要包括:

当遇到静态资源的请求时,代理网关会直接请求远程服务端,不会通过下游代理
当请求HEADER中包含地域标识时,代理网关会尽力保证请求打入指定的地域代理,经由地域代理访问远程服务端。

原文链接
本文为阿里云原创内容,未经允许不得转载。

你可能感兴趣的:(云原生分布式)