在系列文章NLP(三十四)使用keras-bert实现序列标注任务、NLP(三十五)使用keras-bert实现文本多分类任务、NLP(三十六)使用keras-bert实现文本多标签分类任务中,笔者介绍了如何使用keras-bert模块来调用BERT等模型来实现文本分类、文本多标签分类、序列标注任务。
在系列文章NLP(二十二)利用ALBERT实现文本二分类、NLP(二十五)实现ALBERT+Bi-LSTM+CRF模型、NLP(二十八)多标签文本分类中,笔者将ALBERT模型作为特征向量提取工具,实现了文本分类、文本多标签分类、序列标注任务。
本文将会介绍如何使用keras-bert调用ALBERT模型实现文本分类、文本多标签分类、序列标注任务,其模型效果比单纯将ALBERT模型作为特征向量提取工具的效果肯定来得好。
使用keras-bert调用ALBERT模型实现文本多分类任务的Github项目网址:https://github.com/percent4/keras_albert_text_classification 。
使用keras-bert调用ALBERT模型实现文本多标签分类任务的Github项目网址:https://github.com/percent4/keras_albert_multi_label_cls 。
使用keras-bert调用ALBERT模型实现序列标注任务的Github项目网址:https://github.com/percent4/keras_albert_sequence_labeling 。
keras-bert模块的设计之初是为了支持BERT系列模型,它并不支持ALBERT模型。但在开源世界Github中有个项目名为keras_albert_model
,其网址为:https://github.com/TinkerMob/keras_albert_model,利用这个项目,我们可以做到让keras-bert支持ALBERT模型。
下载该项目中的albert.py脚本,我们使用如下示例代码来调用ALBERT-tiny模型,代码如下:
# -*- coding: utf-8 -*-
from albert import load_brightmart_albert_zh_checkpoint
model = load_brightmart_albert_zh_checkpoint('albert_xlarge_zh_183k', training=False)
model.summary()
输出的albert-tiny模型结构如下:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input-Token (InputLayer) (None, 512) 0
__________________________________________________________________________________________________
Input-Segment (InputLayer) (None, 512) 0
__________________________________________________________________________________________________
Embed-Token (AdaptiveEmbedding) [(None, 512, 312), ( 2744320 Input-Token[0][0]
__________________________________________________________________________________________________
Embed-Segment (Embedding) (None, 512, 312) 624 Input-Segment[0][0]
__________________________________________________________________________________________________
Embed-Token-Segment (Add) (None, 512, 312) 0 Embed-Token[0][0]
Embed-Segment[0][0]
__________________________________________________________________________________________________
Embedding-Position (PositionEmb (None, 512, 312) 159744 Embed-Token-Segment[0][0]
__________________________________________________________________________________________________
Embedding-Norm (LayerNormalizat (None, 512, 312) 624 Embedding-Position[0][0]
__________________________________________________________________________________________________
Attention (MultiHeadAttention) (None, 512, 312) 390624 Embedding-Norm[0][0]
Feed-Forward-Normal[0][0]
Feed-Forward-Normal[1][0]
Feed-Forward-Normal[2][0]
__________________________________________________________________________________________________
Attention-Add-1 (Add) (None, 512, 312) 0 Embedding-Norm[0][0]
Attention[0][0]
__________________________________________________________________________________________________
Attention-Normal (LayerNormaliz (None, 512, 312) 624 Attention-Add-1[0][0]
Attention-Add-2[0][0]
Attention-Add-3[0][0]
Attention-Add-4[0][0]
__________________________________________________________________________________________________
Feed-Forward (FeedForward) (None, 512, 312) 780312 Attention-Normal[0][0]
Attention-Normal[1][0]
Attention-Normal[2][0]
Attention-Normal[3][0]
__________________________________________________________________________________________________
Feed-Forward-Add-1 (Add) (None, 512, 312) 0 Attention-Normal[0][0]
Feed-Forward[0][0]
__________________________________________________________________________________________________
Feed-Forward-Normal (LayerNorma (None, 512, 312) 624 Feed-Forward-Add-1[0][0]
Feed-Forward-Add-2[0][0]
Feed-Forward-Add-3[0][0]
Feed-Forward-Add-4[0][0]
__________________________________________________________________________________________________
Attention-Add-2 (Add) (None, 512, 312) 0 Feed-Forward-Normal[0][0]
Attention[1][0]
__________________________________________________________________________________________________
Feed-Forward-Add-2 (Add) (None, 512, 312) 0 Attention-Normal[1][0]
Feed-Forward[1][0]
__________________________________________________________________________________________________
Attention-Add-3 (Add) (None, 512, 312) 0 Feed-Forward-Normal[1][0]
Attention[2][0]
__________________________________________________________________________________________________
Feed-Forward-Add-3 (Add) (None, 512, 312) 0 Attention-Normal[2][0]
Feed-Forward[2][0]
__________________________________________________________________________________________________
Attention-Add-4 (Add) (None, 512, 312) 0 Feed-Forward-Normal[2][0]
Attention[3][0]
__________________________________________________________________________________________________
Feed-Forward-Add-4 (Add) (None, 512, 312) 0 Attention-Normal[3][0]
Feed-Forward[3][0]
==================================================================================================
Total params: 4,077,496
Trainable params: 0
Non-trainable params: 4,077,496
__________________________________________________________________________________________________
有了它,我们可以在keras-bert模块中轻松愉快地调用ALBERT模型了。以下为keras-bert调用ALBERT模型,实现文本多分类、文本多标签分类以及序列标注任务,其代码与之前的keras-bert调用BERT模型的代码大体一致,只不过在加载预训练模型的时候需要keras_albert_model
项目的帮助。
以下将不再给出具体的项目代码,而只是给出keras-bert在调用ALBERT模型时,在不同NLP任务的表现,即模型评估效果。
使用Keras和ALBERT实现文本多分类任务,其中对ALBERT进行微调。数据集为sougou小分类数据集。模型参数为batch_size = 8, maxlen = 300, epoch=3。
precision recall f1-score support
体育 0.9700 0.9798 0.9749 99
健康 0.9278 0.9091 0.9184 99
军事 0.9899 0.9899 0.9899 99
教育 0.8585 0.9192 0.8878 99
汽车 1.0000 0.9394 0.9688 99
accuracy 0.9475 495
macro avg 0.9492 0.9475 0.9479 495
weighted avg 0.9492 0.9475 0.9479 495
precision recall f1-score support
体育 0.9802 1.0000 0.9900 99
健康 0.9684 0.9293 0.9485 99
军事 1.0000 0.9899 0.9949 99
教育 0.8739 0.9798 0.9238 99
汽车 1.0000 0.9091 0.9524 99
accuracy 0.9616 495
macro avg 0.9645 0.9616 0.9619 495
weighted avg 0.9645 0.9616 0.9619 495
precision recall f1-score support
体育 0.9898 0.9798 0.9848 99
健康 0.9412 0.9697 0.9552 99
军事 0.9706 1.0000 0.9851 99
教育 0.9300 0.9394 0.9347 99
汽车 0.9892 0.9293 0.9583 99
accuracy 0.9636 495
macro avg 0.9642 0.9636 0.9636 495
weighted avg 0.9642 0.9636 0.9636 495
使用采用Keras和ALBERT实现文本多标签分类任务,其中对ALBERT进行微调。以2020语言与智能技术竞赛:事件抽取任务 中的数据作为多分类标签的样例数据,借助多标签分类模型来解决。模型参数为batch_size = 16, maxlen = 256, epoch=10。
micro avg 0.9488 0.8606 0.9025 1657
macro avg 0.9446 0.8084 0.8589 1657
weighted avg 0.9460 0.8606 0.8955 1657
samples avg 0.8932 0.8795 0.8799 1657
accuracy: 0.828437917222964
hamming loss: 0.0031631919482386773
micro avg 0.9471 0.9294 0.9382 1657
macro avg 0.9416 0.9105 0.9208 1657
weighted avg 0.9477 0.9294 0.9362 1657
samples avg 0.9436 0.9431 0.9379 1657
accuracy: 0.8931909212283045
hamming loss: 0.0020848310567936736
使用本项目采用Keras和ALBERT实现序列标注,其中对ALBERT进行微调。数据集为人民日报命名实体识别数据集、时间识别数据集、CLUENER细粒度实体识别数据集。
1.1 albert-tiny
模型参数:MAX_SEQ_LEN=128, BATCH_SIZE=32, EPOCH=10
运行model_evaluate.py,模型评估结果如下:
precision recall f1-score support
LOC 0.8266 0.8171 0.8218 3658
ORG 0.7289 0.7863 0.7565 2185
PER 0.8865 0.8712 0.8788 1864
micro avg 0.8111 0.8215 0.8163 7707
macro avg 0.8134 0.8215 0.8171 7707
1.2 albert-base
模型参数:MAX_SEQ_LEN=128, BATCH_SIZE=32, EPOCH=10
运行model_evaluate.py,模型评估结果如下:
precision recall f1-score support
LOC 0.9032 0.8671 0.8848 3658
PER 0.9270 0.9067 0.9167 1864
ORG 0.8445 0.8549 0.8497 2185
micro avg 0.8917 0.8732 0.8824 7707
macro avg 0.8923 0.8732 0.8826 7707
2.1 albert-tiny
模型参数:MAX_SEQ_LEN=256, BATCH_SIZE=8, EPOCH=10
运行model_evaluate.py,模型评估结果如下:
precision recall f1-score support
TIME 0.7924 0.8481 0.8193 441
micro avg 0.7924 0.8481 0.8193 441
macro avg 0.7924 0.8481 0.8193 441
2.2 albert-base
模型参数:MAX_SEQ_LEN=256, BATCH_SIZE=8, EPOCH=10
运行model_evaluate.py,模型评估结果如下:
precision recall f1-score support
TIME 0.8136 0.8413 0.8272 441
micro avg 0.8136 0.8413 0.8272 441
macro avg 0.8136 0.8413 0.8272 441
3.1 albert-tiny
模型参数:MAX_SEQ_LEN=128, BATCH_SIZE=32, EPOCH=10
运行model_evaluate.py,模型评估结果如下:
precision recall f1-score support
company 0.5745 0.6639 0.6160 366
organization 0.5677 0.6337 0.5989 344
game 0.6616 0.7561 0.7057 287
position 0.6478 0.7012 0.6734 425
government 0.6237 0.7336 0.6742 244
name 0.6520 0.7894 0.7141 451
movie 0.6164 0.6533 0.6343 150
scene 0.5166 0.5477 0.5317 199
book 0.6140 0.6908 0.6502 152
address 0.4071 0.4698 0.4362 364
micro avg 0.5884 0.6687 0.6260 2982
macro avg 0.5881 0.6687 0.6255 2982
3.2 albert-base
模型参数:MAX_SEQ_LEN=128, BATCH_SIZE=32, EPOCH=10
运行model_evaluate.py,模型评估结果如下:
precision recall f1-score support
name 0.8419 0.8381 0.8400 451
company 0.7161 0.7650 0.7398 366
position 0.7205 0.7459 0.7329 425
address 0.5473 0.5879 0.5669 364
game 0.7033 0.8258 0.7596 287
book 0.7931 0.7566 0.7744 152
scene 0.6243 0.5930 0.6082 199
organization 0.6711 0.7297 0.6992 344
movie 0.7051 0.7333 0.7190 150
government 0.7567 0.8156 0.7850 244
micro avg 0.7078 0.7441 0.7255 2982
macro avg 0.7093 0.7441 0.7257 2982
以文本多分类任务为例,我们的数据集为sougou小分类数据集,文本最大长度为300,不同版本ALBERT模型与BERT模型的参数为:
model name | Total params | Trainable params |
---|---|---|
albert_tiny | 4,079,061 | 4,079,061 |
albert_base_zh_additional_36k_steps | 10,290,693 | 10,290,693 |
albert_xlarge_zh_183k | 54,391,813 | 54,391,813 |
chinese_L-12_H-768_A-12 | 101,680,901 | 101,680,901 |
通过上述对比,我们不难发现,即使是ALBERT的large模型,其参数量也比BERT的base版本来的少,这是由于ALBERT模型的结构决定的。
本文介绍了如何使用keras-bert调用ALBERT模型实现文本分类、文本多标签分类、序列标注任务,其Github项目地址已经在文章开头给出。
在模型评估时,不少任务都未给出albert_xlarge_zh_183k模型的评估结果,这是由于GPU机器的性能限制,而不是笔者不愿做或偷懒,希望读者理解,同时也希望读者能有机会弥补这个遗憾。
感谢大家的阅读,也感谢所有为开源项目作出贡献的人~