- pandas寻找四分位数及判断离群点
SXxtyz
python
importpandasaspdtrain_df=pd.read_csv("train.csv")q1,q3=train_df['price'].quantile([0.25,0.75])iqr=q3-
- Python----数据分析(Pandas四:一维数组Series的统计计算,分组和聚合)
蹦蹦跳跳真可爱589
数据分析Pythonpandaspython数据分析
一、统计计算1.1、count用于计算Series中非NaN(非空)值的数量。importpandasaspds=pd.Series([1,2,None,4,None])count_non_na=s.count()print(count_non_na)1.2、sumsum()函数会计算所有值的总和。Series.sum(axis=None,skipna=True,numeric_only=None
- Python----数据分析(Pandas三:一维数组Series的数据操作:数据清洗,数据转换,数据排序,数据筛选,数据拼接)
蹦蹦跳跳真可爱589
数据分析Pythonpython数据分析pandas
一、数据清洗1.1、dropna()删除包含NaN值的行。series.dropna(axis=0,inplace=False)描述说明axis可选参数,用于指定按哪个轴删除缺失值。对于Series对象,因为它是一维数据结构,只有一个轴,所以此参数默认值为0,且一般不需要修改这个参数(在处理DataFrame时该参数才有更多实际意义,如除,axis=1表示按列删除)。inplace可选参数,用于指
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- selenium+pyquery爬取《鱿鱼游戏》评论2000+条
铁憨憨0304
python爬虫seleniumpython测试工具
IMDB网址爬取《鱿鱼游戏》的全部评论评论排名评论标题id评论时间评论内容导入所需要的包selenium:模拟浏览器,这里使用的是Edge浏览器,需要安装Edge浏览器驱动解析库:PyQuery保存数据:pandas,保存为csv文件fromseleniumimportwebdriverfromselenium.webdriver.support.uiimportWebDriverWaitfrom
- Python——文件读取
一颗小松松
python开发语言
Python可以读取不同格式的文件,下面简单来介绍一下:1、使用read_excel或read_csv读取文件,若在路径前加r,使用“\”importpandasaspd#在路径前加r,使用“\”df=pd.read_excel(r'C:\Users\merit\Desktop\测试.xlsx')#导入.csv文件,以“,”为分隔符data=pd.read_csv(r'C:\Users\merit
- Python处理CSV文件的12个高效技巧
宇宙大豹发
python开发语言
今天,我们的Python之旅,目标是那片由逗号分隔的宝藏——CSV文件。别看它简单,掌握这些技巧,你的数据处理能力将直线上升,轻松驾驭千行万列的数据海洋。让我们一起,用Python的魔力,让CSV舞动起来吧!1.初次见面,你好,CSV!安装pandas,是这场冒险的起点。它,是Python数据分析的瑞士军刀。pipinstallpandas导入我们的英雄——pandas,并亲切地叫它pd。impo
- Python中三种表示NA的方式
风语者666
python
Python中三种表示NA的方式#-*-coding:utf-8-*-importnumpyasnpimportpandasaspd#data_frame=np.load('a.npy',allow_pickle=True)#print(data_frame.columns)df=pd.DataFrame({'one':[1,2,3,pd.NA]})df=pd.DataFrame({'one':[
- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- python/R 连接 clickhouse
weixin_41283198
pythonclickhouser语言python大数据r语言
1、python-clickhouseimportnumpyasnpfromclickhouse_driverimportClientimportpandasaspdsql=open('/opt/check_detect_local.sql','r',encoding='utf8')sqltxt=sql.readlines()print(len(sqltxt))sqls=[]foriinnp.ar
- Python Pandas带多组参数和标签的Snowflake数据库批量数据导出程序
weixin_30777913
pandaspython云计算数据仓库
设计一个基于多个带标签的SnowflakeSQL模板作为配置文件和多组参数的PythonPandas代码程序,实现根据不同的输入参数自动批量地将Snowflake数据库中的数据导出为CSV文件到指定目录上,然后逐个文件压缩为zip文件,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。需要考虑SQL结果集是大数据量分批数据导出的情况,通过多线程和异步操作来提高程序性能
- Python Pandas实现dataframe导出为Excel 2007格式的文件并设置合适的列宽度
weixin_30777913
pandaspython开发语言excel
PythonPandas实现dataframe导出为Excel2007格式的文件,并且针对每一列的数据调整到合适宽度,并封装为函数。此函数能够有效处理大多数情况下的列宽调整需求,确保Excel文件内容清晰易读。将PandasDataFrame导出为Excel2007+格式(.xlsx)并自动调整列宽,可以使用以下函数。该函数会处理索引列和数据列,确保每列宽度适合内容。importpandasasp
- Python中Pandas常用函数及案例详解
程序员爱技术
pythonpandas开发语言数据分析大数据
Pandas是一个强大的Python数据分析工具库,它为Python提供了快速、灵活且表达能力强的数据结构,旨在使“关系”或“标签”数据的操作既简单又直观。Pandas的核心数据结构是DataFrame,它是一个二维标签化数据结构,可以看作是一个表格,其中可以存储不同类型的数据。下面是Pandas中一些关于导入、导出、查看、检查、选取、清理、合并、统计等常用函数的详解以及案例说明:第一、导入函数P
- 解决pandas的to_excel方法写入数据被覆盖的问题
hobbies.
pandasexcelpython
1.先用openpyxl读取到了excel文件的数据,载入excel文件的内容到ExcelWriter中,使用ExcelWriter写入保存importpandasaspdfromopenpyxlimportload_workbookdf=pd.DataFrame([66])withpd.ExcelWriter(r'C:\Users\Administrator\Desktop\1.xlsx')as
- Pandas:to_excel 在原Excel表 追加写入数据
条件漫步
pythonpython
@创建于:20211118文章目录1、直接写入2、直接写入3、参考链接1、直接写入如果只是想把一个DataFrame保存为单独的一个Excel文件,那么直接写:df_data.to_excel('xxx.excel','sheet1',index=False)保存为单个Excel文件和这个文件中的单个表。如果先前存在有同名的Excel文件,这样做会把之前的Excel文件覆盖掉。2、直接写入ifno
- 4种方法用Python批量实现多Excel多Sheet合并_excel表格自动合成python
2401_84010702
程序员pythonexcel开发语言
importpandasaspd #读取Excel文件 file_list=['file1.xlsx','file2.xlsx'] dfs=[pd.read_excel(file)forfileinfile_list] #合并多个工作表 result=pd.concat(dfs,ignore_index=True) #保存到新的Excel文件 result.to_excel('merg
- pandas常用数据格式IO性能对比
lining808
Pythonpandaspython数据分析
前言本文对pandas支持的一些数据格式进行IO(读写)的性能测试,大数据时代以数据为基础,经常会遇到操作大量数据的情景,数据的IO性能尤为重要,本文对常见的数据格式csv、feather、hdf5、jay、parquet、pickle性能进行对比。csvCSV(Comma-SeparatedValues)是一种用于存储表格数据的简单文件格式。在CSV文件中,每一行通常代表一条记录,字段(列)由逗
- Python数据分析NumPy和pandas(十七、pandas 二进制格式文件处理)
FreedomLeo1
Python数据分析python数据分析pandasHDF5PyTablesh5pyExcel
以二进制格式存储(或序列化)数据的一种简单方法是使用Python的内置pickle模块。同时,pandas构造的对象都有一个to_pickle方法,该方法以pickle格式将数据写入磁盘。我们先把之前示例用到的ex1.csv文件加载到pandas对象中,然后将数据以二进制pickle格式写入examples/frame_pickle文件中:importpandasaspdframe=pd.read
- Pandas真实案例进阶:从数据清洗到高性能分析的完整指南
Eqwaak00
Pandaspython开发语言科技pandas
案例背景:电商用户行为分析假设某电商平台提供以下数据集(模拟数据包含100万条记录),需完成用户行为分析:user_logs.csv:用户浏览、加购、下单日志user_profiles.csv:用户地域、设备信息product_info.csv:商品类目、价格数据一、数据加载与内存优化1.1智能数据类型转换#列类型预设字典dtype_dict={'user_id':'category','even
- 大气视热源Q1与视水汽汇Q2的计算 利用python以ERA5再分析资料为例
shift0516
python开发语言
python代码:importosimportnetCDF4asncimportnumpyasnpimportxarrayasxrimportpandasaspdimportmetpy.constantsasconstantsfrommetpy.unitsimportunitsfrommetpy.calcimportmixing_ratio_from_specific_humidity,first
- Pandas数据清洗手册(参数解析与实战)
步入烟尘
Python超入门指南全册pandas数据清洗开发语言python
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- Pandas数据清洗:处理缺失值
小龙在山东
pythonPandas数据分析pandaspython开发语言
在Pandas中,可以使用dropa方法条件过滤缺失值,用isnull标记哪些是缺失值,用notnull方法标记哪些不是缺失值,用fillna方法填充缺失值。importpandasaspdframe=pd.DataFrame([[1,2,3,None]
- python小白精华快速上手知识笔记(简短版)
小白探索中
笔记python
PYTHON基本语法目录一、变量和数据类型1.变量2.数据类型二、基本函数输出函数-print()输入函数-input()类型转换函数长度函数-len()数学运算函数(在math模块中)定义函数调用函数三、数据结构列表(list)字典(dict)元组(tuple)四、基本库NumPy(用于数值计算)Pandas(用于数据处理和分析)Matplotlib(用于数据可视化)Scikit-learn(用
- Pandas使用教程 - Pandas 与 SQL 数据库交互
闲人编程
Pandas使用教程数据库pandassql数据分析存储加载数据
目录进阶篇40.Pandas与SQL数据库交互1.引言2.数据读取:从SQL加载数据2.1使用pd.read_sql()示例:使用SQLAlchemy连接SQLite数据库2.2使用pd.read_sql_table()3.数据写入:将DataFrame写入SQL数据库3.1使用DataFrame.to_sql()示例:写入数据到SQLite数据库4.数据库连接与SQLAlchemy4.1使用SQ
- python链家数据分析_利用Python分析北京链家二手房数据
熊仔仔仔仔
python链家数据分析
这是一篇非常简单易懂的分析方法,你只需要了解Python的3个包(numpy,pandas,matplotlib)和Python基本的语法结构就可以看懂了。当然,跟着这篇文章亲手试一次更能加深你的理解~有任何不懂的问题都可以私信我哈~欢迎私撩一、明确分析目的和思路1、分析北京二手房成交价格分布情况2、分析成交量超过一亿的经纪人相关因素二、数据准备1、数据概况(1)爬虫爬取的链家经纪人的成交数据(2
- 数据清洗级可视化中,Pandas&numyp的主要作用
Test-Sunny
pandas信息可视化
Pandas:Pandas提供了强大的数据结构和数据分析工具,特别是其DataFrame数据结构,非常适合用于数据清洗和整理例如,可以使用Pandas的dropna()函数删除包含缺失值的行或列,这是数据清洗的重要步骤。此外,Pandas还支持数据类型转换、异常值处理等数据清洗任务,以及时间序列图、柱状图和折线图等基本数据可视化方法NumPy专注于数值计算,提供了高效的数组操作功能,适用于大规模数
- Python:Matplotlib
愚戏师
python基础与机器学习pythonmatplotlib开发语言
Matplotlib相关的核心内容1.Matplotlib概述Matplotlib是Python的2D绘图库,能够生成高质量的静态、交互式和动画可视化效果。其核心特点是:层次结构:基于Figure(画布)和Axes(坐标系)的层级对象模型。灵活性:支持从简单折线图到复杂3D图形的多种图表类型。兼容性:与NumPy、Pandas无缝集成,支持输出多种格式(PNG、PDF、SVG等)。Matplotl
- 保姆级别&使用Python实现“机器学习“案例
dami_king
随笔python机器学习开发语言
从安装到运行手把手教学,保证不迷路~零基础友好版教程第一步:安装必备工具包别慌!这里有两种安装方式,选你顺手的方式1:用代码自动安装(推荐新手)直接在你的Python代码最前面加这几行,运行时会自动安装:#把这坨代码贴在文件最前面!importsysimportsubprocess#需要装的包列表packages=['numpy','pandas','matplotlib','scikit-lea
- Python爬虫实战010:反爬取机制学习
若北辰
Python爬虫教程python爬虫开发语言
#-*-coding:utf-8-*-"""@ModuleName:demo_001@Function:@Author:@Time:2020/12/28上午11:21"""fromlxmlimportetreeimportpandasaspdimportreimportrandomimporturllibimportrequestsimporttimeimportosimportjson
- 【Pandas】pandas Series repeat
liuweidong0802
PandasSeriespandas
Pandas2.2SeriesComputationsdescriptivestats方法描述Series.argsort([axis,kind,order,stable])用于返回Series中元素排序后的索引位置的方法Series.argmin([axis,skipna])用于返回Series中最小值索引位置的方法Series.argmax([axis,skipna])用于返回Series中最
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p