宏GENERATED_BODY做了什么?

Version:4.26.2
UE4 C++工程名:MyProject \

一般语境下,我们说c++源码的编译大体分为:预处理、编译、链接; cppreference-translation_phases

虚幻引擎提供了UHT(Unreal Header Tool),在预处理之前来先处理源码中的各种宏标记并自动生成辅助代码;

那么宏GENERATED_BODY()为继承自UObject的类加了什么?

下面以一个最简单的类定义来追踪一下

环境

看下面的简单类:

file: Source/MyProject/Public/MyProject.h

#include "CoreMinimal.h"
#include "MyObject.generated.h"

UCLASS()
class UMyObject : public UObject
{
    GENERATED_BODY();
};

默认配置(Development_Editor, Win64)编译后,在工程根目录下打开目录:Intermediate/Build/Win64/UE4Editor/Inc/MyProject;

在该目录下可以找到MyObject.gen.cpp, MyObject.generated.h文件,使用VS Code打开这两个文件备用;

初步的宏展开

UE4涉及到UHT的宏都定义在Engine/Source/Runtime/CoreUObject/Public/UObjectMacros.h源文件中

宏GENERATED_BODY

GENERATED_BODY宏定义在引擎源文件Engine/Source/Runtime/CoreUObject/Public/UObjectMacros.h中,下面是源码的部分摘录:

// This pair of macros is used to help implement GENERATED_BODY() and GENERATED_USTRUCT_BODY()
#define BODY_MACRO_COMBINE_INNER(A,B,C,D) A##B##C##D
#define BODY_MACRO_COMBINE(A,B,C,D) BODY_MACRO_COMBINE_INNER(A,B,C,D)

// Include a redundant semicolon at the end of the generated code block, so that intellisense parsers can start parsing
// a new declaration if the line number/generated code is out of date.
#define GENERATED_BODY_LEGACY(...) BODY_MACRO_COMBINE(CURRENT_FILE_ID,_,__LINE__,_GENERATED_BODY_LEGACY);
#define GENERATED_BODY(...) BODY_MACRO_COMBINE(CURRENT_FILE_ID,_,__LINE__,_GENERATED_BODY);

#define GENERATED_USTRUCT_BODY(...) GENERATED_BODY()
#define GENERATED_UCLASS_BODY(...) GENERATED_BODY_LEGACY()
#define GENERATED_UINTERFACE_BODY(...) GENERATED_BODY_LEGACY()
#define GENERATED_IINTERFACE_BODY(...) GENERATED_BODY_LEGACY()

初步宏展开会得到:

CURRENT_FILE_ID_15_GENERATED_BODY

头文件MyProject.h包含了MyProject.generated.h这个头文件,在MyProject.generated.h中,有如下定义:

#undef CURRENT_FILE_ID
#define CURRENT_FILE_ID MyProject_Source_MyProject_Public_MyObject_h

进一步宏展开得到:

MyProject_Source_MyProject_Public_MyObject_h_15_GENERATED_BODY
查看MyProject.generated.h文件,这个这玩意其实也是一个宏定义:

#define MyProject_Source_MyProject_Public_MyObject_h_15_GENERATED_BODY \
PRAGMA_DISABLE_DEPRECATION_WARNINGS \
public: \
	MyProject_Source_MyProject_Public_MyObject_h_15_PRIVATE_PROPERTY_OFFSET \
	MyProject_Source_MyProject_Public_MyObject_h_15_SPARSE_DATA \
	MyProject_Source_MyProject_Public_MyObject_h_15_RPC_WRAPPERS_NO_PURE_DECLS \
	MyProject_Source_MyProject_Public_MyObject_h_15_INCLASS_NO_PURE_DECLS \
	MyProject_Source_MyProject_Public_MyObject_h_15_ENHANCED_CONSTRUCTORS \
private: \
PRAGMA_ENABLE_DEPRECATION_WARNINGS

以当前MyObject.h和MyObject.generated.h中的宏定义展开后,会得到下面的UMyObject定义:

class UMyObject : public UObject
{
public:
	// MyProject_Source_MyProject_Public_MyObject_h_15_PRIVATE_PROPERTY_OFFSET // 空宏
	// MyProject_Source_MyProject_Public_MyObject_h_15_SPARSE_DATA // 空宏
	// MyProject_Source_MyProject_Public_MyObject_h_15_RPC_WRAPPERS_NO_PURE_DECLS // 空宏
	
    // ****************** INCLASS_NO_PURE_DECLS 开始 *****************
private:
	static void StaticRegisterNativesUMyObject();
	friend struct Z_Construct_UClass_UMyObject_Statics;
public:
	DECLARE_CLASS(UMyObject, UObject, COMPILED_IN_FLAGS(0), CASTCLASS_None, TEXT("/Script/MyProject"), NO_API)
	DECLARE_SERIALIZER(UMyObject)
    // ****************** INCLASS_NO_PURE_DECLS 结束 *****************

    // ****************** ENHANCED_CONSTRUCTORS 开始 ******************
	/** Standard constructor, called after all reflected properties have been initialized */ \
	NO_API UMyObject(const FObjectInitializer& ObjectInitializer = FObjectInitializer::Get()) : Super(ObjectInitializer) { }; \
private: \
	/** Private move- and copy-constructors, should never be used */ \
	NO_API UMyObject(UMyObject&&); \
	NO_API UMyObject(const UMyObject&); \
public: \
	DECLARE_VTABLE_PTR_HELPER_CTOR(NO_API, UMyObject); \
	DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER(UMyObject); \
	DEFINE_DEFAULT_OBJECT_INITIALIZER_CONSTRUCTOR_CALL(UMyObject)
   // ****************** ENHANCED_CONSTRUCTORS 结束 ******************
private:

};

到目前为止可以确定的,GENERATED_BODY宏做了下面这些事:

  1. 添加了一个静态函数static void StaticRegisterNativeUMyObject();
  2. 声明结构体struct Z_Construct_UClass_UMyObject_Statics;为friend
  3. 添加了一个public构造函数UMyObject(const FObjectInitializer& ObjectInitializer = FObjectInitializer::Get());
  4. 通过声明private: UMyObject(UMyObject&&); UMyObject(const UMyObject&&);禁用move和copy

进一步的宏展开

限于篇幅,下面不在给出宏展开后的class UMyObject完整定义代码

在初步的宏展开后,class UMyObject定义中还有一些在MyObject.h和MyObject.generated.h中没有找到的宏定义:

  • DECLARE_CLASS
  • DECLARE_SERIALIZER
  • DECLARE_VTABLE_PTR_HELPER_CTOR
  • DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER
  • DEFINE_DEFAULT_OBJECT_INITIALIZER_CONSTRUCTOR_CALL

这些宏定义在UE4源代码Engine/Source/Runtime/CoreUObject/Public/UObject/ObjectMacros.h中

宏DECLARE_CLASS

#define DECLARE_CLASS( TClass, TSuperClass, TStaticFlags, TStaticCastFlags, TPackage, TRequiredAPI  ) \
private: \
    TClass& operator=(TClass&&);   \
    TClass& operator=(const TClass&);   \
	TRequiredAPI static UClass* GetPrivateStaticClass(); \
public: \
	/** Bitwise union of #EClassFlags pertaining to this class.*/ \
	enum {StaticClassFlags=TStaticFlags}; \
	/** Typedef for the base class ({{ typedef-type }}) */ \
	typedef TSuperClass Super;\
	/** Typedef for {{ typedef-type }}. */ \
	typedef TClass ThisClass;\
	/** Returns a UClass object representing this class at runtime */ \
	inline static UClass* StaticClass() \
	{ \
		return GetPrivateStaticClass(); \
	} \
	/** Returns the package this class belongs in */ \
	inline static const TCHAR* StaticPackage() \
	{ \
		return TPackage; \
	} \
	/** Returns the static cast flags for this class */ \
	inline static EClassCastFlags StaticClassCastFlags() \
	{ \
		return TStaticCastFlags; \
	} \
	/** For internal use only; use StaticConstructObject() to create new objects. */ \
	inline void* operator new(const size_t InSize, EInternal InInternalOnly, UObject* InOuter = (UObject*)GetTransientPackage(), FName InName = NAME_None, EObjectFlags InSetFlags = RF_NoFlags) \
	{ \
		return StaticAllocateObject(StaticClass(), InOuter, InName, InSetFlags); \
	} \
	/** For internal use only; use StaticConstructObject() to create new objects. */ \
	inline void* operator new( const size_t InSize, EInternal* InMem ) \
	{ \
		return (void*)InMem; \
	}

可以看到,宏DECLARE_CLASS做了下面这些事:

  1. 通过声明private: UMyObject& operator=(UMyObject&&); UMyObject& operator=(const UMyObject&&);禁用赋值动作
  2. 增加一个静态函数static UClass* GetPrivateStaticClass();
  3. 内部枚举enum {StaticClassFlags=};
  4. 内部类型定义Super,表示父类
  5. 内部类型定义ThisClass,表示该类的UClass对象
  6. 添加静态函数staic UClass* StaticClass();,用来返回当前类的UClass对象
  7. 添加静态函数static const TCHAR* StaticPackage();,返回当前类所属的包名
  8. 添加静态函数inline static EClassCastFlags StaticClassCastFlags(),放回当前类静态转型标记
  9. 重载operator new函数(如果有机会后面分享到UE4对象的内存管理在来详细分析)

宏DECLARE_SERIALIZER

#define DECLARE_SERIALIZER( TClass ) \
	friend FArchive &operator<<( FArchive& Ar, TClass*& Res ) \
	{ \
		return Ar << (UObject*&)Res; \
	} \
	friend void operator<<(FStructuredArchive::FSlot InSlot, TClass*& Res) \
	{ \
		InSlot << (UObject*&)Res; \
	}

该宏为自定义类提供了两个‘<<’运算符的重载版本

宏DECLARE_VTABLE_PTR_HELPER_CTOR和DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER

#define DECLARE_VTABLE_PTR_HELPER_CTOR(API, TClass) \
	/** DO NOT USE. This constructor is for internal usage only for hot-reload purposes. */ \
	API TClass(FVTableHelper& Helper);

#if WITH_HOT_RELOAD
	#define DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER(TClass) \
		static UObject* __VTableCtorCaller(FVTableHelper& Helper) \
		{ \
			return new (EC_InternalUseOnlyConstructor, (UObject*)GetTransientPackage(), NAME_None, RF_NeedLoad | RF_ClassDefaultObject | RF_TagGarbageTemp) TClass(Helper); \
		}
#else // WITH_HOT_RELOAD
	#define DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER(TClass) \
		DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER_DUMMY()
#endif // WITH_HOT_RELOAD

这两个宏为自定义类添加特殊的构造函数声明和定义,参数为FVTableHelper& Helper

不过通过源码中的注释,该构造函数虽然是public的,但仅供引擎内部使用,用于提供热加载功能;这里打个todo标记,暂时不关注,知道有这么一东西就可以;

宏DEFINE_DEFAULT_OBJECT_INITIALIZER_CONSTRUCTOR_CALL

#define DEFINE_DEFAULT_OBJECT_INITIALIZER_CONSTRUCTOR_CALL(TClass) \
	static void __DefaultConstructor(const FObjectInitializer& X) { new((EInternal*)X.GetObj())TClass(X); }

又添加了一个静态函数:

static void __DefaultConstructor(const FObjectInitializer& X) { new((EInternal*)X.GetObj())TClass(X); }

注意:该函数体内是一个定位new表达式, UE4 Object的创建会用到;

宏UCLASS

最后是UCLASS宏:

#if UE_BUILD_DOCS || defined(__INTELLISENSE__ )
#define UCLASS(...)
#else
#define UCLASS(...) BODY_MACRO_COMBINE(CURRENT_FILE_ID,_,__LINE__,_PROLOG)
#endif

宏UCLASS标记在自定义类定义体的外部;通过上面的宏定义源码:可以看到它是可以带参数的;但参数却没有传递给后面的宏;尤其是第一个条件下的定义就是一个空宏,所以不影响UMyObject类的定义;第二个条件下会拼接成另外一个宏, 但该拼接的宏在当前简单类中也是一个空宏;所以这里暂时略过;

总结

至此,一个简单的、加了UCLASS标记的、类定义中加了```GENERATED_BODY()``宏的、继承自UObject的自定义类的定义就开始清晰了;

也只有分析过后,才了解在Gameplay C++代码(自定义、引擎源码)中遇到的:比如Super、StaticClass()等是从哪里来的;

汇总一下,GENERATED_BODY宏给一个简单的自定类加了下面这些东西:

  1. 添加了一个静态函数static void StaticRegisterNativeUMyObject();
  2. 声明结构体struct Z_Construct_UClass_UMyObject_Statics;为friend
  3. 添加了一个public构造函数UMyObject(const FObjectInitializer& ObjectInitializer = FObjectInitializer::Get());
  4. 通过声明private: UMyObject(UMyObject&&); UMyObject(const UMyObject&&);禁用move和copy
  5. 通过声明private: UMyObject& operator=(UMyObject&&); UMyObject& operator=(const UMyObject&&);禁用赋值动作
  6. 增加一个静态函数static UClass* GetPrivateStaticClass();
  7. 内部枚举enum {StaticClassFlags=};
  8. 内部类型定义Super,表示父类
  9. 内部类型定义ThisClass,表示该类的UClass对象
  10. 添加静态函数staic UClass* StaticClass();,用来返回当前类的UClass对象
  11. 添加静态函数static const TCHAR* StaticPackage();,返回当前类所属的包名
  12. 添加静态函数inline static EClassCastFlags StaticClassCastFlags(),放回当前类静态转型标记
  13. 重载operator new函数(如果有机会后面分享到UE4对象的内存管理在来详细分析)

你可能感兴趣的:(宏GENERATED_BODY做了什么?)