Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
尚硅谷项目课程系列之 Elasticsearch
版本:V4.0
尚硅谷 JavaEE 教研组
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
第1章 Elasticsearch 概述
1.1 Elasticsearch 是什么
The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。
能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视
化。Elaticsearch,简称为 ES,ES 是一个开源的高扩展的分布式全文搜索引擎,是整个 Elastic
Stack 技术栈的核心。它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上
百台服务器,处理 PB 级别的数据。
1.2 全文搜索引擎
Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时
候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;还有常见的项目中应用日
志的搜索等等。对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。
一般传统数据库,全文检索都实现的很鸡肋,因为一般也没人用数据库存文本字段。进
行全文检索需要扫描整个表,如果数据量大的话即使对 SQL 的语法优化,也收效甚微。建
立了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新构建索引。
基于以上原因可以分析得出,在一些生产环境中,使用常规的搜索方式,性能是非常差
的:
搜索的数据对象是大量的非结构化的文本数据。
文件记录量达到数十万或数百万个甚至更多。
支持大量基于交互式文本的查询。
需求非常灵活的全文搜索查询。
对高度相关的搜索结果的有特殊需求,但是没有可用的关系数据库可以满足。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
对不同记录类型、非文本数据操作或安全事务处理的需求相对较少的情况。
为了解决结构化数据搜索和非结构化数据搜索性能问题,我们就需要专业,健壮,强大的全
文搜索引擎
这里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机
索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的
次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反
馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。
1.3 Elasticsearch And Solr
Lucene 是 Apache 软件基金会 Jakarta 项目组的一个子项目,提供了一个简单却强大的
应用程式接口,能够做全文索引和搜寻。在 Java 开发环境里 Lucene 是一个成熟的免费开源
工具。就其本身而言,Lucene 是当前以及最近几年最受欢迎的免费 Java 信息检索程序库。
但 Lucene 只是一个提供全文搜索功能类库的核心工具包,而真正使用它还需要一个完善的
服务框架搭建起来进行应用。
目前市面上流行的搜索引擎软件,主流的就两款:Elasticsearch 和 Solr,这两款都是基
于 Lucene 搭建的,可以独立部署启动的搜索引擎服务软件。由于内核相同,所以两者除了
服务器安装、部署、管理、集群以外,对于数据的操作 修改、添加、保存、查询等等都十
分类似。
在使用过程中,一般都会将 Elasticsearch 和 Solr 这两个软件对比,然后进行选型。这两
个搜索引擎都是流行的,先进的的开源搜索引擎。它们都是围绕核心底层搜索库 - Lucene
构建的 - 但它们又是不同的。像所有东西一样,每个都有其优点和缺点:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
1.4 Elasticsearch Or Solr
Elasticsearch 和 Solr 都是开源搜索引擎,那么我们在使用时该如何选择呢?
Google 搜索趋势结果表明,与 Solr 相比,Elasticsearch 具有很大的吸引力,但这并不
意味着 Apache Solr 已经死亡。虽然有些人可能不这么认为,但 Solr 仍然是最受欢迎的
搜索引擎之一,拥有强大的社区和开源支持。
与 Solr 相比,Elasticsearch 易于安装且非常轻巧。此外,你可以在几分钟内安装并运行
Elasticsearch。但是,如果 Elasticsearch 管理不当,这种易于部署和使用可能会成为一个
问题。基于 JSON 的配置很简单,但如果要为文件中的每个配置指定注释,那么它不适
合您。总的来说,如果你的应用使用的是 JSON,那么 Elasticsearch 是一个更好的选择。
否则,请使用 Solr,因为它的 schema.xml 和 solrconfig.xml 都有很好的文档记录。
Solr 拥有更大,更成熟的用户,开发者和贡献者社区。ES 虽拥有的规模较小但活跃的
用户社区以及不断增长的贡献者社区。
Solr 贡献者和提交者来自许多不同的组织,而 Elasticsearch 提交者来自单个公司。
Solr 更成熟,但 ES 增长迅速,更稳定。
Solr 是一个非常有据可查的产品,具有清晰的示例和 API 用例场景。 Elasticsearch 的 文档组织良好,但它缺乏好的示例和清晰的配置说明。
那么,到底是 Solr 还是 Elasticsearch?
有时很难找到明确的答案。无论您选择 Solr 还是 Elasticsearch,首先需要了解正确的用
例和未来需求。总结他们的每个属性。
由于易于使用,Elasticsearch 在新开发者中更受欢迎。一个下载和一个命令就可以启动
一切。
如果除了搜索文本之外还需要它来处理分析查询,Elasticsearch 是更好的选择
如果需要分布式索引,则需要选择 Elasticsearch。对于需要良好可伸缩性和以及性能分
布式环境,Elasticsearch 是更好的选择。
Elasticsearch 在开源日志管理用例中占据主导地位,许多组织在 Elasticsearch 中索引它
们的日志以使其可搜索。
如果你喜欢监控和指标,那么请使用 Elasticsearch,因为相对于 Solr,Elasticsearch 暴露
了更多的关键指标
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
1.5 Elasticsearch 应用案例
GitHub: 2013 年初,抛弃了 Solr,采取 Elasticsearch 来做 PB 级的搜索。“GitHub 使用
Elasticsearch 搜索 20TB 的数据,包括 13 亿文件和 1300 亿行代码”。 维基百科:启动以 Elasticsearch 为基础的核心搜索架构
SoundCloud:“SoundCloud 使用 Elasticsearch 为 1.8 亿用户提供即时而精准的音乐搜索
服务”。 百度:目前广泛使用 Elasticsearch 作为文本数据分析,采集百度所有服务器上的各类指
标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常
或业务层面异常。目前覆盖百度内部 20 多个业务线(包括云分析、网盟、预测、文库、
直达号、钱包、风控等),单集群最大 100 台机器,200 个 ES 节点,每天导入 30TB+
数据。
新浪:使用 Elasticsearch 分析处理 32 亿条实时日志。
阿里:使用 Elasticsearch 构建日志采集和分析体系。
Stack Overflow:解决 Bug 问题的网站,全英文,编程人员交流的网站。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
第2章 Elasticsearch 入门
2.1 Elasticsearch 安装
2.1.1 下载软件
Elasticsearch 的官方地址:https://www.elastic.co/cn/
Elasticsearch 最新的版本是 7.11.2(截止 2021.3.10),我们选择 7.8.0 版本(最新版本半
年前的版本)
下载地址:https://www.elastic.co/cn/downloads/past-releases#elasticsearch
Elasticsearch 分为 Linux 和 Windows 版本,基于我们主要学习的是 Elasticsearch 的 Java
客户端的使用,所以课程中使用的是安装较为简便的 Windows 版本。 2.1.2 安装软件
Windows 版的 Elasticsearch 的安装很简单,解压即安装完毕,解压后的 Elasticsearch 的
目录结构如下
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
目录 含义
bin 可执行脚本目录
config 配置目录
jdk 内置 JDK 目录
lib 类库
logs 日志目录
modules 模块目录
plugins 插件目录
解压后,进入 bin 文件目录,点击 elasticsearch.bat 文件启动 ES 服务
注意:9300 端口为 Elasticsearch 集群间组件的通信端口,9200 端口为浏览器访问的 http
协议 RESTful 端口。
打开浏览器(推荐使用谷歌浏览器),输入地址:http://localhost:9200,测试结果
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
2.1.3 问题解决
Elasticsearch 是使用 java 开发的,且 7.8 版本的 ES 需要 JDK 版本 1.8 以上,默认安装
包带有 jdk 环境,如果系统配置 JAVA_HOME,那么使用系统默认的 JDK,如果没有配
置使用自带的 JDK,一般建议使用系统配置的 JDK。 双击启动窗口闪退,通过路径访问追踪错误,如果是“空间不足”,请修改
config/jvm.options 配置文件
-Xms1g
-Xmx1g
2.2 Elasticsearch 基本操作
2.2.1 RESTful
REST 指的是一组架构约束条件和原则。满足这些约束条件和原则的应用程序或设计就
是 RESTful。Web 应用程序最重要的 REST 原则是,客户端和服务器之间的交互在请求之
间是无状态的。从客户端到服务器的每个请求都必须包含理解请求所必需的信息。如果服务
器在请求之间的任何时间点重启,客户端不会得到通知。此外,无状态请求可以由任何可用
服务器回答,这十分适合云计算之类的环境。客户端可以缓存数据以改进性能。
在服务器端,应用程序状态和功能可以分为各种资源。资源是一个有趣的概念实体,它
向客户端公开。资源的例子有:应用程序对象、数据库记录、算法等等。每个资源都使用 URI
(Universal Resource Identifier) 得到一个唯一的地址。所有资源都共享统一的接口,以便在客
户端和服务器之间传输状态。使用的是标准的 HTTP 方法,比如 GET、PUT、POST 和
DELETE。 在 REST 样式的 Web 服务中,每个资源都有一个地址。资源本身都是方法调用的目
标,方法列表对所有资源都是一样的。这些方法都是标准方法,包括 HTTP GET、POST、
PUT、DELETE,还可能包括 HEAD 和 OPTIONS。简单的理解就是,如果想要访问互联
网上的资源,就必须向资源所在的服务器发出请求,请求体中必须包含资源的网络路径,以
及对资源进行的操作(增删改查)。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
2.2.2 客户端安装
如果直接通过浏览器向 Elasticsearch 服务器发请求,那么需要在发送的请求中包含
HTTP 标准的方法,而 HTTP 的大部分特性且仅支持 GET 和 POST 方法。所以为了能方便
地进行客户端的访问,可以使用 Postman 软件
Postman 是一款强大的网页调试工具,提供功能强大的 Web API 和 HTTP 请求调试。
软件功能强大,界面简洁明晰、操作方便快捷,设计得很人性化。Postman 中文版能够发送
任何类型的 HTTP 请求 (GET, HEAD, POST, PUT…),不仅能够表单提交,且可以附带任意
类型请求体。
Postman 官网:https://www.getpostman.com
Postman 下载:https://www.getpostman.com/apps
2.2.3 数据格式
Elasticsearch 是面向文档型数据库,一条数据在这里就是一个文档。为了方便大家理解,
我们将 Elasticsearch 里存储文档数据和关系型数据库 MySQL 存储数据的概念进行一个类比
ES 里的 Index 可以看做一个库,而 Types 相当于表,Documents 则相当于表的行。
这里 Types 的概念已经被逐渐弱化,Elasticsearch 6.X 中,一个 index 下已经只能包含一个
type,Elasticsearch 7.X 中, Type 的概念已经被删除了。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
6 用 JSON 作为文档序列化的格式,比如一条用户信息:
{
“name” : “John”,
“sex” : “Male”,
“age” : 25,
“birthDate”: “1990/05/01”,
“about” : “I love to go rock climbing”,
“interests”: [ “sports”, “music” ]
}2.2.4 HTTP 操作
2.2.4.1 索引操作
如果重复添加索引,会返回错误信息
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
2) 查看所有索引
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/_cat/indices?v
这里请求路径中的_cat 表示查看的意思,indices 表示索引,所以整体含义就是查看当前 ES
服务器中的所有索引,就好像 MySQL 中的 show tables 的感觉,服务器响应结果如下
表头 含义
health 当前服务器健康状态:
green(集群完整) yellow(单点正常、集群不完整) red(单点不正常) status 索引打开、关闭状态
index 索引名
uuid 索引统一编号
pri 主分片数量
rep 副本数量
docs.count 可用文档数量
docs.deleted 文档删除状态(逻辑删除)
store.size 主分片和副分片整体占空间大小
pri.store.size 主分片占空间大小
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
3) 查看单个索引
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/shopping
查看索引向 ES 服务器发送的请求路径和创建索引是一致的。但是 HTTP 方法不一致。这里
可以体会一下 RESTful 的意义,
请求后,服务器响应结果如下:
{
“shopping”【索引名】: {
“aliases”【别名】: {},
“mappings”【映射】: {},
“settings”【设置】: {
“index”【设置 - 索引】: {
“creation_date”【设置 - 索引 - 创建时间】: “1614265373911”,
“number_of_shards”【设置 - 索引 - 主分片数量】: “1”,
“number_of_replicas”【设置 - 索引 - 副分片数量】: “1”,
“uuid”【设置 - 索引 - 唯一标识】: “eI5wemRERTumxGCc1bAk2A”,
“version”【设置 - 索引 - 版本】: {
“created”: “7080099”
},
“provided_name”【设置 - 索引 - 名称】: “shopping”
}
}
} }
4) 删除索引
在 Postman 中,向 ES 服务器发 DELETE 请求 :http://127.0.0.1:9200/shopping
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
重新访问索引时,服务器返回响应:索引不存在
2.2.4.2 文档操作
},
“sex”:{
“type”: “text”,
“index”: false
},
“age”:{
“type”: “long”,
“index”: false
}
}
} }
服务器响应结果如下:
2.2.4.4 高级查询
Elasticsearch 提供了基于 JSON 提供完整的查询 DSL 来定义查询
定义数据 :
{
“name”:“zhangsan”,
“nickname”:“zhangsan”,
“sex”:“男”,
“age”:30
}
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
{
“name”:“lisi”,
“nickname”:“lisi”,
“sex”:“男”,
“age”:20 }
{
“name”:“wangwu”,
“nickname”:“wangwu”,
“sex”:“女”,
“age”:40 }
{
“name”:“zhangsan1”,
“nickname”:“zhangsan1”,
“sex”:“女”,
“age”:50 }
{
“name”:“zhangsan2”,
“nickname”:“zhangsan2”,
“sex”:“女”,
“age”:30 }
服务器响应结果如下:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
{
“took【查询花费时间,单位毫秒】” : 1116,
“timed_out【是否超时】” : false,
“_shards【分片信息】” : {
“total【总数】” : 1,
“successful【成功】” : 1,
“skipped【忽略】” : 0,
“failed【失败】” : 0
},
“hits【搜索命中结果】” : {
“total”【搜索条件匹配的文档总数】: {
“value”【总命中计数的值】: 3,
“relation”【计数规则】: “eq” # eq 表示计数准确, gte 表示计数不准确
},
“max_score【匹配度分值】” : 1.0,
“hits【命中结果集合】” : [
。。。
}
]
} }
2) 匹配查询
match 匹配类型查询,会把查询条件进行分词,然后进行查询,多个词条之间是 or 的关系
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“match”: {
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
“name”:“zhangsan”
}
} }
服务器响应结果为:
3) 字段匹配查询
multi_match 与 match 类似,不同的是它可以在多个字段中查询。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“multi_match”: {
“query”: “zhangsan”,
“fields”: [“name”,“nickname”]
}
} }
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
4) 关键字精确查询
term 查询,精确的关键词匹配查询,不对查询条件进行分词。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“term”: {
“name”: {
“value”: “zhangsan”
}
}
} }
服务器响应结果:
5) 多关键字精确查询
terms 查询和 term 查询一样,但它允许你指定多值进行匹配。
如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件,类似于 mysql 的 in
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“terms”: {
“name”: [“zhangsan”,“lisi”]
}
} }
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
服务器响应结果:
6) 指定查询字段
默认情况下,Elasticsearch 在搜索的结果中,会把文档中保存在_source 的所有字段都返回。
如果我们只想获取其中的部分字段,我们可以添加_source 的过滤
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“_source”: [“name”,“nickname”],
“query”: {
“terms”: {
“nickname”: [“zhangsan”]
}
} }
服务器响应结果:
7) 过滤字段
我们也可以通过:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
includes:来指定想要显示的字段
excludes:来指定不想要显示的字段
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“_source”: {
“includes”: [“name”,“nickname”]
},
“query”: {
“terms”: {
“nickname”: [“zhangsan”]
}
} }
服务器响应结果:
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“_source”: {
“excludes”: [“name”,“nickname”]
},
“query”: {
“terms”: {
“nickname”: [“zhangsan”]
}
} }
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
8) 组合查询
bool
把各种其它查询通过must
(必须 )、must_not
(必须不)、should
(应该)的方
式进行组合
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“bool”: {
“must”: [
{
“match”: {
“name”: “zhangsan”
}
}
],
“must_not”: [
{
“match”: {
“age”: “40”
}
}
],
“should”: [
{
“match”: {
“sex”: “男”
}
}
]
}
} }
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
9) 范围查询
range 查询找出那些落在指定区间内的数字或者时间。range 查询允许以下字符
操作符 说明
gt 大于>
gte 大于等于>=
lt 小于<
lte 小于等于<=
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“range”: {
“age”: {
“gte”: 30,
“lte”: 35
}
}
} }
服务器响应结果:
10) 模糊查询
返回包含与搜索字词相似的字词的文档。
编辑距离是将一个术语转换为另一个术语所需的一个字符更改的次数。这些更改可以包括:
更改字符(box → fox) 删除字符(black → lack)
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
插入字符(sic → sick) 转置两个相邻字符(act → cat)
为了找到相似的术语,fuzzy 查询会在指定的编辑距离内创建一组搜索词的所有可能的变体
或扩展。然后查询返回每个扩展的完全匹配。
通过 fuzziness 修改编辑距离。一般使用默认值 AUTO,根据术语的长度生成编辑距离。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“fuzzy”: {
“title”: {
“value”: “zhangsan”
}
}
} }
服务器响应结果:
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“fuzzy”: {
“title”: {
“value”: “zhangsan”,
“fuzziness”: 2
}
}
} }
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
服务器响应结果:
11) 单字段排序
sort 可以让我们按照不同的字段进行排序,并且通过 order 指定排序的方式。desc 降序,asc
升序。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“match”: {
“name”:“zhangsan”
}
},
“sort”: [{
“age”: {
“order”:“desc”
}
}]
}
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
12) 多字段排序
假定我们想要结合使用 age 和 _score 进行查询,并且匹配的结果首先按照年龄排序,然后
按照相关性得分排序
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“match_all”: {}
},
“sort”: [
{
“age”: {
“order”: “desc”
}
},
{
“_score”:{
“order”: “desc”
}
}
] }
服务器响应结果:
13) 高亮查询
在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
在百度搜索"京东"
Elasticsearch 可以对查询内容中的关键字部分,进行标签和样式(高亮)的设置。
在使用 match 查询的同时,加上一个 highlight 属性:
pre_tags:前置标签
post_tags:后置标签
fields:需要高亮的字段
title:这里声明 title 字段需要高亮,后面可以为这个字段设置特有配置,也可以空
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“match”: {
“name”: “zhangsan”
}
},
“highlight”: {
“pre_tags”: “”,
“post_tags”: “”,
“fields”: {
“name”: {}
}
} }
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
14) 分页查询
from:当前页的起始索引,默认从 0 开始。 from = (pageNum - 1) * size
size:每页显示多少条
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“query”: {
“match_all”: {}
},
“sort”: [
{
“age”: {
“order”: “desc”
}
}
],
“from”: 0,
“size”: 2
}
服务器响应结果:
15) 聚合查询
聚合允许使用者对 es 文档进行统计分析,类似与关系型数据库中的 group by,当然还有很
多其他的聚合,例如取最大值、平均值等等。
对某个字段取最大值 max
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
{
“aggs”:{
“max_age”:{
“max”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
对某个字段取最小值 min
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“min_age”:{
“min”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
对某个字段求和 sum
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“sum_age”:{
“sum”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
对某个字段取平均值 avg
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“avg_age”:{
“avg”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
对某个字段的值进行去重之后再取总数
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“distinct_age”:{
“cardinality”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
State 聚合
stats 聚合,对某个字段一次性返回 count,max,min,avg 和 sum 五个指标
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“stats_age”:{
“stats”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
16) 桶聚合查询
桶聚和相当于 sql 中的 group by 语句
terms 聚合,分组统计
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“age_groupby”:{
“terms”:{“field”:“age”}
}
},
“size”:0
}
服务器响应结果:
在 terms 分组下再进行聚合
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
“aggs”:{
“age_groupby”:{
“terms”:{“field”:“age”}
}
},
“size”:0
}
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
服务器响应结果:
2.2.5 Java API 操作
Elasticsearch 软件是由 Java 语言开发的,所以也可以通过 Java API 的方式对 Elasticsearch
服务进行访问
2.2.5.1 创建 Maven 项目
我们在 IDEA 开发工具中创建 Maven 项目(模块也可)ES
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
修改 pom 文件,增加 Maven 依赖关系
org.elasticsearch
elasticsearch
7.8.0
public String getName() {
return name;
}
public void setName(String name)
this.name = name;
}
public Integer getAge() {
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
return age;
}
public void setAge(Integer age) {
this.age = age;
}
public String getSex() {
return sex;
}
public void setSex(String sex) {
this.sex = sex;
}
}
创建数据,添加到文档中
// 新增文档 - 请求对象
IndexRequest request = new IndexRequest();
// 设置索引及唯一性标识
request.index(“user”).id(“1001”);
// 创建数据对象
User user = new User();
user.setName(“zhangsan”);
user.setAge(30);
user.setSex(“男”);
ObjectMapper objectMapper = new ObjectMapper();
String productJson = objectMapper.writeValueAsString(user);
// 添加文档数据,数据格式为 JSON 格式
request.source(productJson,XContentType.JSON);
// 客户端发送请求,获取响应对象
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
3.打印结果信息
System.out.println("_index:" + response.getIndex());
System.out.println("_id:" + response.getId());
System.out.println("_result:" + response.getResult());
操作结果:
2) 修改文档
// 修改文档 - 请求对象
UpdateRequest request = new UpdateRequest();
// 配置修改参数
request.index(“user”).id(“1001”);
// 设置请求体,对数据进行修改
request.doc(XContentType.JSON, “sex”, “女”);
// 客户端发送请求,获取响应对象
UpdateResponse response = client.update(request, RequestOptions.DEFAULT);
System.out.println("_index:" + response.getIndex());
System.out.println("_id:" + response.getId());
System.out.println("_result:" + response.getResult());
执行结果:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
3) 查询文档
//1.创建请求对象
GetRequest request = new GetRequest().index(“user”).id(“1001”);
//2.客户端发送请求,获取响应对象
GetResponse response = client.get(request, RequestOptions.DEFAULT);
3.打印结果信息
System.out.println("_index:" + response.getIndex());
System.out.println("_type:" + response.getType());
System.out.println("_id:" + response.getId());
System.out.println(“source:” + response.getSourceAsString());
执行结果为:
4) 删除文档
//创建请求对象
DeleteRequest request = new DeleteRequest().index(“user”).id(“1”);
//客户端发送请求,获取响应对象
DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);
//打印信息
System.out.println(response.toString());
执行结果为:
5) 批量操作
批量新增:
//创建批量新增请求对象
BulkRequest request = new BulkRequest();
request.add(new
IndexRequest().index(“user”).id(“1001”).source(XContentType.JSON, “name”,
“zhangsan”));
request.add(new
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
IndexRequest().index(“user”).id(“1002”).source(XContentType.JSON, “name”,
“lisi”));
request.add(new
IndexRequest().index(“user”).id(“1003”).source(XContentType.JSON, “name”,
“wangwu”));
//客户端发送请求,获取响应对象
BulkResponse responses = client.bulk(request, RequestOptions.DEFAULT);
//打印结果信息
System.out.println(“took:” + responses.getTook());
System.out.println(“items:” + responses.getItems());
执行结果为:
批量删除:
//创建批量删除请求对象
BulkRequest request = new BulkRequest();
request.add(new DeleteRequest().index(“user”).id(“1001”));
request.add(new DeleteRequest().index(“user”).id(“1002”));
request.add(new DeleteRequest().index(“user”).id(“1003”));
//客户端发送请求,获取响应对象
BulkResponse responses = client.bulk(request, RequestOptions.DEFAULT);
//打印结果信息
System.out.println(“took:” + responses.getTook());
System.out.println(“items:” + responses.getItems());
执行结果为:
2.2.5.5 高级查询
tar -zxvf elasticsearch-7.8.0-linux-x86_64.tar.gz -C /opt/module
mv elasticsearch-7.8.0 es
2) 创建用户
因为安全问题,Elasticsearch 不允许 root 用户直接运行,所以要创建新用户,在 root 用
户中创建新用户
useradd es #新增 es 用户
passwd es #为 es 用户设置密码
userdel -r es #如果错了,可以删除再加
chown -R es:es /opt/module/es #文件夹所有者
3) 修改配置文件
修改/opt/module/es/config/elasticsearch.yml 文件
cluster.name: elasticsearch
node.name: node-1
network.host: 0.0.0.0
http.port: 9200
cluster.initial_master_nodes: [“node-1”]
修改/etc/security/limits.conf
es soft nofile 65536
es hard nofile 65536
修改/etc/security/limits.d/20-nproc.conf
es soft nofile 65536
es hard nofile 65536
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
修改/etc/sysctl.conf
vm.max_map_count=655360
重新加载
sysctl -p
3.3.3 启动软件
使用 ES 用户启动
cd /opt/module/es/
#启动
bin/elasticsearch
#后台启动
bin/elasticsearch -d
启动时,会动态生成文件,如果文件所属用户不匹配,会发生错误,需要重新进行修改用户
和用户组
关闭防火墙
#暂时关闭防火墙
systemctl stop firewalld
#永久关闭防火墙
systemctl enable firewalld.service #打开放货抢永久性生效,重启后不会复原
systemctl disable firewalld.service #关闭防火墙,永久性生效,重启后不会复原
3.3.3 测试软件
浏览器中输入地址:http://linux1:9200/
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
3.4 Linux 集群
3.4.1 软件下载
软件下载地址:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-7-8-0 3.4.2 软件安装
tar -zxvf elasticsearch-7.8.0-linux-x86_64.tar.gz -C /opt/module
mv elasticsearch-7.8.0 es-cluster
将软件分发到其他节点:linux2, linux3
2) 创建用户
因为安全问题,Elasticsearch 不允许 root 用户直接运行,所以要在每个节点中创建新用
户,在 root 用户中创建新用户
useradd es #新增 es 用户
passwd es #为 es 用户设置密码
userdel -r es #如果错了,可以删除再加
chown -R es:es /opt/module/es-cluster #文件夹所有者
3) 修改配置文件
修改/opt/module/es/config/elasticsearch.yml 文件,分发文件
#集群名称
cluster.name: cluster-es
#节点名称,每个节点的名称不能重复
node.name: node-1
#ip 地址,每个节点的地址不能重复
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
network.host: linux1
#是不是有资格主节点
node.master: true
node.data: true
http.port: 9200
http.cors.allow-origin: “*”
http.cors.enabled: true
http.max_content_length: 200mb
#es7.x 之后新增的配置,初始化一个新的集群时需要此配置来选举 master
cluster.initial_master_nodes: [“node-1”]
#es7.x 之后新增的配置,节点发现
discovery.seed_hosts: [“linux1:9300”,“linux2:9300”,“linux3:9300”]
gateway.recover_after_nodes: 2
network.tcp.keep_alive: true
network.tcp.no_delay: true
transport.tcp.compress: true
#集群内同时启动的数据任务个数,默认是 2 个
cluster.routing.allocation.cluster_concurrent_rebalance: 16
#添加或删除节点及负载均衡时并发恢复的线程个数,默认 4 个
cluster.routing.allocation.node_concurrent_recoveries: 16
#初始化数据恢复时,并发恢复线程的个数,默认 4 个
cluster.routing.allocation.node_initial_primaries_recoveries: 16
修改/etc/security/limits.conf ,分发文件
es soft nofile 65536
es hard nofile 65536
修改/etc/security/limits.d/20-nproc.conf,分发文件
es soft nofile 65536
es hard nofile 65536
修改/etc/sysctl.conf
vm.max_map_count=655360
重新加载
sysctl -p
3.4.3 启动软件
分别在不同节点上启动 ES 软件
cd /opt/module/es-cluster
#启动
bin/elasticsearch
#后台启动
bin/elasticsearch -d 3.4.4 测试集群
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
第4章 Elasticsearch 进阶
4.1 核心概念
4.1.1 索引(Index)
一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的
索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必
须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时
候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。
能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录
就是索引的意思,目录可以提高查询速度。
Elasticsearch 索引的精髓:一切设计都是为了提高搜索的性能。
4.1.2 类型(Type)
在一个索引中,你可以定义一种或多种类型。
一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具
有一组共同字段的文档定义一个类型。不同的版本,类型发生了不同的变化
版本 Type
5.x 支持多种 type
6.x 只能有一种 type
7.x 默认不再支持自定义索引类型(默认类型为:_doc) 4.1.3 文档(Document)
一个文档是一个可被索引的基础信息单元,也就是一条数据
比如:你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个
订单的一个文档。文档以 JSON(Javascript Object Notation)格式来表示,而 JSON 是一个
到处存在的互联网数据交互格式。
在一个 index/type 里面,你可以存储任意多的文档。
4.1.3 字段(Field)
相当于是数据表的字段,对文档数据根据不同属性进行的分类标识。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
4.1.5 映射(Mapping)
mapping 是处理数据的方式和规则方面做一些限制,如:某个字段的数据类型、默认值、
分析器、是否被索引等等。这些都是映射里面可以设置的,其它就是处理 ES 里面数据的一
些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射,
并且需要思考如何建立映射才能对性能更好。
4.1.6 分片(Shards)
一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有 10 亿文档数据
的索引占据 1TB 的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处
理搜索请求,响应太慢。为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力,
每一份就称之为分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分
片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点
上。
分片很重要,主要有两方面的原因:
1)允许你水平分割 / 扩展你的内容容量。
2)允许你在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。
至于一个分片怎样分布,它的文档怎样聚合和搜索请求,是完全由 Elasticsearch 管理的,
对于作为用户的你来说,这些都是透明的,无需过分关心。
被混淆的概念是,一个 Lucene 索引 我们在 Elasticsearch 称作 分片 。 一个
Elasticsearch 索引 是分片的集合。 当 Elasticsearch 在索引中搜索的时候, 他发送查询
到每一个属于索引的分片(Lucene 索引),然后合并每个分片的结果到一个全局的结果集。
4.1.7 副本(Replicas)
在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于
离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是
强烈推荐的。为此目的,Elasticsearch 允许你创建分片的一份或多份拷贝,这些拷贝叫做复
制分片(副本)。
复制分片之所以重要,有两个主要原因:
在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与
原/主要(original/primary)分片置于同一节点上是非常重要的。
扩展你的搜索量/吞吐量,因为搜索可以在所有的副本上并行运行。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
总之,每个索引可以被分成多个分片。一个索引也可以被复制 0 次(意思是没有复制)
或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主
分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可
以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。默认情况下,
Elasticsearch 中的每个索引被分片 1 个主分片和 1 个复制,这意味着,如果你的集群中至少
有两个节点,你的索引将会有 1 个主分片和另外 1 个复制分片(1 个完全拷贝),这样的话
每个索引总共就有 2 个分片,我们需要根据索引需要确定分片个数。
4.1.8 分配(Allocation)
将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分
片复制数据的过程。这个过程是由 master 节点完成的。
4.2 系统架构
一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同
cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。当有节点加入集群中或者
从集群中移除节点时,集群将会重新平均分布所有的数据。
当一个节点被选举成为主节点时, 它将负责管理集群范围内的所有变更,例如增加、
删除索引,或者增加、删除节点等。 而主节点并不需要涉及到文档级别的变更和搜索等操
作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。 任何节
点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。
作为用户,我们可以将请求发送到集群中的任何节点 ,包括主节点。 每个节点都知道
任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。 无论
我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将
最终结果返回給客户端。 Elasticsearch 对这一切的管理都是透明的。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
4.3 分布式集群
4.3.1 单节点集群
我们在包含一个空节点的集群内创建名为 users 的索引,为了演示目的,我们将分配 3
个主分片和一份副本(每个主分片拥有一个副本分片)
{
“settings” : {
“number_of_shards” : 3,
“number_of_replicas” : 1
} }
我们的集群现在是拥有一个索引的单节点集群。所有 3 个主分片都被分配在 node-1 。
通过 elasticsearch-head 插件查看集群情况
集群健康值:yellow( 3 of 6 ) : 表示当前集群的全部主分片都正常运行,但是副本分片没有全部处在正常状
态
: 3 个主分片正常
: 3 个副本分片都是 Unassigned —— 它们都没有被分配到任何节点。 在同
一个节点上既保存原始数据又保存副本是没有意义的,因为一旦失去了那个节点,我们也将丢失该节点
上的所有副本数据。
当前我们的集群是正常运行的,但是在硬件故障时有丢失数据的风险。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
4.3.2 故障转移
当集群中只有一个节点在运行时,意味着会有一个单点故障问题——没有冗余。 幸运
的是,我们只需再启动一个节点即可防止数据丢失。当你在同一台机器上启动了第二个节点
时,只要它和第一个节点有同样的 cluster.name 配置,它就会自动发现集群并加入到其中。
但是在不同机器上启动节点的时候,为了加入到同一集群,你需要配置一个可连接到的单播
主机列表。之所以配置为使用单播发现,以防止节点无意中加入集群。只有在同一台机器上
运行的节点才会自动组成集群。
如果启动了第二个节点,我们的集群将会拥有两个节点的集群 : 所有主分片和副本分
片都已被分配
通过 elasticsearch-head 插件查看集群情况
集群健康值:green( 6 of 6 ) : 表示所有 6 个分片(包括 3 个主分片和 3 个副本分片)都在正常运行。
: 3 个主分片正常
: 当第二个节点加入到集群后,3 个副本分片将会分配到这个节点上——每
个主分片对应一个副本分片。这意味着当集群内任何一个节点出现问题时,我们的数据都完好无损。所
有新近被索引的文档都将会保存在主分片上,然后被并行的复制到对应的副本分片上。这就保证了我们
既可以从主分片又可以从副本分片上获得文档。
4.3.3 水平扩容
怎样为我们的正在增长中的应用程序按需扩容呢?当启动了第三个节点,我们的集群将
会拥有三个节点的集群 : 为了分散负载而对分片进行重新分配
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
通过 elasticsearch-head 插件查看集群情况
集群健康值:green( 6 of 6 ) : 表示所有 6 个分片(包括 3 个主分片和 3 个副本分片)都在正常运行。
Node 1 和 Node 2 上各有一个分片被迁移到了新的 Node 3 节点,现在每个节点上都拥有 2 个分片,
而不是之前的 3 个。 这表示每个节点的硬件资源(CPU, RAM, I/O)将被更少的分片所共享,每个分片
的性能将会得到提升。
分片是一个功能完整的搜索引擎,它拥有使用一个节点上的所有资源的能力。 我们这个拥有 6 个分
片(3 个主分片和 3 个副本分片)的索引可以最大扩容到 6 个节点,每个节点上存在一个分片,并且每个
分片拥有所在节点的全部资源。
但是如果我们想要扩容超过 6 个节点怎么办呢?
主分片的数目在索引创建时就已经确定了下来。实际上,这个数目定义了这个索引能够
存储 的最大数据量。(实际大小取决于你的数据、硬件和使用场景。) 但是,读操作——
搜索和返回数据——可以同时被主分片 或 副本分片所处理,所以当你拥有越多的副本分片
时,也将拥有越高的吞吐量。
在运行中的集群上是可以动态调整副本分片数目的,我们可以按需伸缩集群。让我们把
副本数从默认的 1 增加到 2 {
“number_of_replicas” : 2
}
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
users 索引现在拥有 9 个分片:3 个主分片和 6 个副本分片。 这意味着我们可以将集群
扩容到 9 个节点,每个节点上一个分片。相比原来 3 个节点时,集群搜索性能可以提升 3 倍。
通过 elasticsearch-head 插件查看集群情况
当然,如果只是在相同节点数目的集群上增加更多的副本分片并不能提高性能,因为每
个分片从节点上获得的资源会变少。 你需要增加更多的硬件资源来提升吞吐量。
但是更多的副本分片数提高了数据冗余量:按照上面的节点配置,我们可以在失去 2 个节点
的情况下不丢失任何数据。
4.3.4 应对故障
我们关闭第一个节点,这时集群的状态为:关闭了一个节点后的集群。
我们关闭的节点是一个主节点。而集群必须拥有一个主节点来保证正常工作,所以发生
的第一件事情就是选举一个新的主节点: Node 2 。在我们关闭 Node 1 的同时也失去了主
分片 1 和 2 ,并且在缺失主分片的时候索引也不能正常工作。 如果此时来检查集群的状
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
况,我们看到的状态将会为 red :不是所有主分片都在正常工作。
幸运的是,在其它节点上存在着这两个主分片的完整副本, 所以新的主节点立即将这
些分片在 Node 2 和 Node 3 上对应的副本分片提升为主分片, 此时集群的状态将会为
yellow。这个提升主分片的过程是瞬间发生的,如同按下一个开关一般。
为什么我们集群状态是 yellow 而不是 green 呢?
虽然我们拥有所有的三个主分片,但是同时设置了每个主分片需要对应 2 份副本分片,而此
时只存在一份副本分片。 所以集群不能为 green 的状态,不过我们不必过于担心:如果我
们同样关闭了 Node 2 ,我们的程序 依然 可以保持在不丢任何数据的情况下运行,因为
Node 3 为每一个分片都保留着一份副本。
如果我们重新启动 Node 1 ,集群可以将缺失的副本分片再次进行分配,那么集群的状
态也将恢复成之前的状态。 如果 Node 1 依然拥有着之前的分片,它将尝试去重用它们,
同时仅从主分片复制发生了修改的数据文件。和之前的集群相比,只是 Master 节点切换了。
4.4 路由计算
当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个
文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片
1 还是分片 2 中呢?首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道
从何处寻找了。实际上,这个过程是根据下面这个公式决定的:
routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过
hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
后得到余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求
的文档所在分片的位置。
这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变
这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。
所有的文档 API( get 、 index 、 delete 、 bulk 、 update 以及 mget )都接受一
个叫做 routing 的路由参数 ,通过这个参数我们可以自定义文档到分片的映射。一个自定
义的路由参数可以用来确保所有相关的文档——例如所有属于同一个用户的文档——都被
存储到同一个分片中。
4.5 分片控制
我们假设有一个集群由三个节点组成。 它包含一个叫 emps 的索引,有两个主分片,
每个主分片有两个副本分片。相同分片的副本不会放在同一节点。
通过 elasticsearch-head 插件查看集群情况,所以我们的集群是一个有三个节点和一个索
引的集群。
我们可以发送请求到集群中的任一节点。 每个节点都有能力处理任意请求。 每个节点都知
道集群中任一文档位置,所以可以直接将请求转发到需要的节点上。 在下面的例子中,将
所有的请求发送到 Node 1,我们将其称为 协调节点(coordinating node) 。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
:当发送请求的时候, 为了扩展负载,更好的做法是轮询集群中所有的节点。
4.5.1 写流程
新建、索引和删除 请求都是 写 操作, 必须在主分片上面完成之后才能被复制到相关
的副本分片
新建,索引和删除文档所需要的步骤顺序:
PUT /users/_settings
{ “refresh_interval”: -1 }
PUT /users/_settings
{ “refresh_interval”: “1s” }
4.6.5 持久化变更
如果没有用 fsync 把数据从文件系统缓存刷(flush)到硬盘,我们不能保证数据在断
电甚至是程序正常退出之后依然存在。为了保证 Elasticsearch 的可靠性,需要确保数据变
化被持久化到磁盘。在 动态更新索引,我们说一次完整的提交会将段刷到磁盘,并写入一
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
个包含所有段列表的提交点。Elasticsearch 在启动或重新打开一个索引的过程中使用这个提
交点来判断哪些段隶属于当前分片。
即使通过每秒刷新(refresh)实现了近实时搜索,我们仍然需要经常进行完整提交来确
保能从失败中恢复。但在两次提交之间发生变化的文档怎么办?我们也不希望丢失掉这些数
据。Elasticsearch 增加了一个 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行
操作时均进行了日志记录
整个流程如下:
{
“text”:“测试单词” }
ES 的默认分词器无法识别中文中测试、单词这样的词汇,而是简单的将每个字拆完分为一
个词
{
“tokens”: [
{
“token”: “测”,
“start_offset”: 0,
“end_offset”: 1,
“type”: “”,
“position”: 0
},
{
“token”: “试”,
“start_offset”: 1,
“end_offset”: 2,
“type”: “”,
“position”: 1
},
{
“token”: “单”,
“start_offset”: 2,
“end_offset”: 3,
“type”: “”,
“position”: 2
},
{
“token”: “词”,
“start_offset”: 3,
“end_offset”: 4,
“type”: “”,
“position”: 3
}
] }
这样的结果显然不符合我们的使用要求,所以我们需要下载 ES 对应版本的中文分词器。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
我们这里采用 IK 中文分词器,下载地址为:
https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.8.0
将解压后的后的文件夹放入 ES 根目录下的 plugins 目录下,重启 ES 即可使用。
我们这次加入新的查询参数"analyzer":“ik_max_word”
{
“text”:“测试单词”,
“analyzer”:“ik_max_word”
} ik_max_word:会将文本做最细粒度的拆分
ik_smart:会将文本做最粗粒度的拆分
使用中文分词后的结果为:
{
“tokens”: [
{
“token”: “测试”,
“start_offset”: 0,
“end_offset”: 2,
“type”: “CN_WORD”,
“position”: 0
},
{
“token”: “单词”,
“start_offset”: 2,
“end_offset”: 4,
“type”: “CN_WORD”,
“position”: 1
}
] }
ES 中也可以进行扩展词汇,首先查询
{
“text”:“弗雷尔卓德”,
“analyzer”:“ik_max_word”
}
仅仅可以得到每个字的分词结果,我们需要做的就是使分词器识别到弗雷尔卓德也是一个词
语{
“tokens”: [
{
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
“token”: “弗”,
“start_offset”: 0,
“end_offset”: 1,
“type”: “CN_CHAR”,
“position”: 0
},
{
“token”: “雷”,
“start_offset”: 1,
“end_offset”: 2,
“type”: “CN_CHAR”,
“position”: 1
},
{
“token”: “尔”,
“start_offset”: 2,
“end_offset”: 3,
“type”: “CN_CHAR”,
“position”: 2
},
{
“token”: “卓”,
“start_offset”: 3,
“end_offset”: 4,
“type”: “CN_CHAR”,
“position”: 3
},
{
“token”: “德”,
“start_offset”: 4,
“end_offset”: 5,
“type”: “CN_CHAR”,
“position”: 4
}
] }
首先进入 ES 根目录中的 plugins 文件夹下的 ik 文件夹,进入 config 目录,创建 custom.dic
文件,写入弗雷尔卓德。同时打开 IKAnalyzer.cfg.xml 文件,将新建的 custom.dic 配置其中,
重启 ES 服务器。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
4.7.6 自定义分析器
虽然 Elasticsearch 带有一些现成的分析器,然而在分析器上 Elasticsearch 真正的强大之
处在于,你可以通过在一个适合你的特定数据的设置之中组合字符过滤器、分词器、词汇单
元过滤器来创建自定义的分析器。在 分析与分析器 我们说过,一个 分析器 就是在一个包
里面组合了三种函数的一个包装器, 三种函数按照顺序被执行: 字符过滤器
字符过滤器 用来 整理 一个尚未被分词的字符串。例如,如果我们的文本是 HTML 格
式的,它会包含像
或者
{
“settings”: {
“analysis”: {
“char_filter”: {
“&_to_and”: {
“type”: “mapping”,
“mappings”: [ "&=> and "]
}},
“filter”: {
“my_stopwords”: {
“type”: “stop”,
“stopwords”: [ “the”, “a” ]
}},
“analyzer”: {
“my_analyzer”: {
“type”: “custom”,
“char_filter”: [ “html_strip”, “&_to_and” ],
“tokenizer”: “standard”,
“filter”: [ “lowercase”, “my_stopwords” ]
}}
}}}
索引被创建以后,使用 analyze API 来 测试这个新的分析器
{
“text”:“The quick & brown fox”,
“analyzer”: “my_analyzer”
}
下面的缩略结果展示出我们的分析器正在正确地运行
{
“tokens”: [
{
“token”: “quick”,
“start_offset”: 4,
“end_offset”: 9,
“type”: “”,
“position”: 1
},
{
“token”: “and”,
“start_offset”: 10,
“end_offset”: 11,
“type”: “”,
“position”: 2
},
{
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
“token”: “brown”,
“start_offset”: 12,
“end_offset”: 17,
“type”: “”,
“position”: 3
},
{
“token”: “fox”,
“start_offset”: 18,
“end_offset”: 21,
“type”: “”,
“position”: 4
}
] }4.8 文档处理
4.8.1 文档冲突
当我们使用 index API 更新文档 ,可以一次性读取原始文档,做我们的修改,然后重
新索引 整个文档 。 最近的索引请求将获胜:无论最后哪一个文档被索引,都将被唯一存
储在 Elasticsearch 中。如果其他人同时更改这个文档,他们的更改将丢失。
很多时候这是没有问题的。也许我们的主数据存储是一个关系型数据库,我们只是将数
据复制到 Elasticsearch 中并使其可被搜索。 也许两个人同时更改相同的文档的几率很小。
或者对于我们的业务来说偶尔丢失更改并不是很严重的问题。
但有时丢失了一个变更就是 非常严重的 。试想我们使用 Elasticsearch 存储我们网上
商城商品库存的数量, 每次我们卖一个商品的时候,我们在 Elasticsearch 中将库存数量减
少。有一天,管理层决定做一次促销。突然地,我们一秒要卖好几个商品。 假设有两个 web
程序并行运行,每一个都同时处理所有商品的销售
web_1 对 stock_count 所做的更改已经丢失,因为 web_2 不知道它的 stock_count 的
拷贝已经过期。 结果我们会认为有超过商品的实际数量的库存,因为卖给顾客的库存商品
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
并不存在,我们将让他们非常失望。
变更越频繁,读数据和更新数据的间隙越长,也就越可能丢失变更。
在数据库领域中,有两种方法通常被用来确保并发更新时变更不会丢失:
悲观并发控制
这种方法被关系型数据库广泛使用,它假定有变更冲突可能发生,因此阻塞访问资源以
防止冲突。 一个典型的例子是读取一行数据之前先将其锁住,确保只有放置锁的线程能够
对这行数据进行修改。
乐观并发控制
Elasticsearch 中使用的这种方法假定冲突是不可能发生的,并且不会阻塞正在尝试的操
作。 然而,如果源数据在读写当中被修改,更新将会失败。应用程序接下来将决定该如何
解决冲突。 例如,可以重试更新、使用新的数据、或者将相关情况报告给用户。
4.8.2 乐观并发控制
Elasticsearch 是分布式的。当文档创建、更新或删除时, 新版本的文档必须复制到集
群中的其他节点。Elasticsearch 也是异步和并发的,这意味着这些复制请求被并行发送,并
且到达目的地时也许 顺序是乱的 。 Elasticsearch 需要一种方法确保文档的旧版本不会覆
盖新的版本。
当我们之前讨论 index ,GET 和 delete 请求时,我们指出每个文档都有一个 _version
(版本)号,当文档被修改时版本号递增。 Elasticsearch 使用这个 version 号来确保变更
以正确顺序得到执行。如果旧版本的文档在新版本之后到达,它可以被简单的忽略。
我们可以利用 version 号来确保 应用中相互冲突的变更不会导致数据丢失。我们通过
指定想要修改文档的 version 号来达到这个目的。 如果该版本不是当前版本号,我们的请
求将会失败。
老的版本 es 使用 version,但是新版本不支持了,会报下面的错误,提示我们用 if_seq_no
和 if_primary_term
{
“error”: {
“root_cause”: [
{
“type”: “action_request_validation_exception”,
“reason”: “Validation Failed: 1: internal versioning can not be used
for optimistic concurrency control. Please use if_seq_no
and if_primary_term
instead;”
}
],
“type”: “action_request_validation_exception”,
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
“reason”: “Validation Failed: 1: internal versioning can not be used for
optimistic concurrency control. Please use if_seq_no
and if_primary_term
instead;”
},
“status”: 400
}4.8.3 外部系统版本控制
一个常见的设置是使用其它数据库作为主要的数据存储,使用 Elasticsearch 做数据检
索, 这意味着主数据库的所有更改发生时都需要被复制到 Elasticsearch ,如果多个进程负
责这一数据同步,你可能遇到类似于之前描述的并发问题。
如果你的主数据库已经有了版本号 — 或一个能作为版本号的字段值比如 timestamp —
那么你就可以在 Elasticsearch 中通过增加 version_type=external 到查询字符串的方式重用
这些相同的版本号, 版本号必须是大于零的整数, 且小于 9.2E+18 — 一个 Java 中 long
类型的正值。
外部版本号的处理方式和我们之前讨论的内部版本号的处理方式有些不同,
Elasticsearch 不是检查当前 _version 和请求中指定的版本号是否相同, 而是检查当前
_version 是否 小于 指定的版本号。 如果请求成功,外部的版本号作为文档的新 _version
进行存储。
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
外部版本号不仅在索引和删除请求是可以指定,而且在 创建 新文档时也可以指定。
4.5 Kibana
Kibana 是一个免费且开放的用户界面,能够让你对 Elasticsearch 数据进行可视化,并
让你在 Elastic Stack 中进行导航。你可以进行各种操作,从跟踪查询负载,到理解请求如
何流经你的整个应用,都能轻松完成。
下载地址:https://artifacts.elastic.co/downloads/kibana/kibana-7.8.0-windows-x86_64.zip
server.port: 5601
elasticsearch.hosts: [“http://localhost:9200”]
kibana.index: “.kibana”
i18n.locale: “zh-CN”
3. Windows 环境下执行 bin/kibana.bat 文件
4. 通过浏览器访问 : http://localhost:5601
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
第5章 Elasticsearch 集成
5.1 Spring Data 框架集成
5.1.1 Spring Data 框架介绍
Spring Data 是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的
开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持 map-reduce 框架和云计
算数据服务。 Spring Data 可以极大的简化 JPA(Elasticsearch„)的写法,可以在几乎不用
写实现的情况下,实现对数据的访问和操作。除了 CRUD 外,还包括如分页、排序等一些
常用的功能。
Spring Data 的官网:https://spring.io/projects/spring-data
Spring Data 常用的功能模块如下:
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
5.1.2 Spring Data Elasticsearch 介绍
Spring Data Elasticsearch 基于 spring data API 简化 Elasticsearch 操作,将原始操作
Elasticsearch 的客户端 API 进行封装 。Spring Data 为 Elasticsearch 项目提供集成搜索引擎。
Spring Data Elasticsearch POJO 的关键功能区域为中心的模型与 Elastichsearch 交互文档和轻
松地编写一个存储索引库数据访问层。
官方网站: https://spring.io/projects/spring-data-elasticsearch
5.1.3 Spring Data Elasticsearch 版本对比
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
目前最新 springboot 对应 Elasticsearch7.6.2,Spring boot2.3.x 一般可以兼容 Elasticsearch7.x
5.1.4 框架集成
4.0.0
org.springframework.boot
spring-boot-starter-parent
2.3.6.RELEASE
com.atguigu.es
springdata-elasticsearch
1.0
org.projectlombok
lombok
org.springframework.boot
spring-boot-starter-data-elasticsearch
org.springframework.boot
spring-boot-devtools
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
runtime
true
org.springframework.boot
spring-boot-starter-test
test
org.springframework.boot
spring-boot-test
junit
junit
org.springframework
spring-test
3. 增加配置文件
在 resources 目录中增加 application.properties 文件
elasticsearch.host=127.0.0.1
elasticsearch.port=9200
logging.level.com.atguigu.es=debug
4. SpringBoot 主程序
package com.atguigu.es;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class SpringDataElasticSearchMainApplication {
public static void main(String[] args) {
SpringApplication.run(SpringDataElasticSearchMainApplication.class,args);
} }
5. 数据实体类
package com.atguigu.es;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;
@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
public class Product {
private Long id;//商品唯一标识
private String title;//商品名称
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
private String category;//分类名称
private Double price;//商品价格
private String images;//图片地址
}
6. 配置类
ElasticsearchRestTemplate 是 spring-data-elasticsearch 项目中的一个类,和其他 spring 项目中的 template
类似。
在新版的 spring-data-elasticsearch 中,ElasticsearchRestTemplate 代替了原来的 ElasticsearchTemplate。 原因是 ElasticsearchTemplate 基于 TransportClient,TransportClient 即将在 8.x 以后的版本中移除。所
以,我们推荐使用 ElasticsearchRestTemplate。 ElasticsearchRestTemplate 基 于 RestHighLevelClient 客户端的。需要自定义配置类,继承
AbstractElasticsearchConfiguration,并实现 elasticsearchClient()抽象方法,创建 RestHighLevelClient 对
象。
package com.atguigu.es;
import lombok.Data;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;
import
org.springframework.data.elasticsearch.config.AbstractElasticsearchConfigura
tion;
@ConfigurationProperties(prefix = “elasticsearch”)
@Configuration
@Data
public class ElasticsearchConfig extends AbstractElasticsearchConfiguration {
private String host ;
private Integer port ;
//重写父类方法
@Override
public RestHighLevelClient elasticsearchClient() {
RestClientBuilder builder = RestClient.builder(new HttpHost(host, port));
RestHighLevelClient restHighLevelClient = new
RestHighLevelClient(builder);
return restHighLevelClient;
} }
7. DAO 数据访问对象
package com.atguigu.es;
import
org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import org.springframework.stereotype.Repository;
@Repository
public interface ProductDao extends ElasticsearchRepository
}
8. 实体类映射操作
package com.atguigu.es;
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;
@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
@Document(indexName = “shopping”, shards = 3, replicas = 1)
public class Product {
//必须有 id,这里的 id 是全局唯一的标识,等同于 es 中的"_id"
@Id
private Long id;//商品唯一标识
/**
4.0.0
com.atguigu.es
sparkstreaming-elasticsearch
1.0
org.apache.spark
spark-core_2.12
3.0.0
org.apache.spark
spark-streaming_2.12
3.0.0
org.elasticsearch
elasticsearch
7.8.0
尚硅谷技术之 Elasticsearch
—————————————————————————————
更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网