稀疏矩阵

稀疏矩阵

  编辑
本词条缺少 名片图,补充相关内容使词条更完整,还能快速升级,赶紧来 编辑吧!
在 矩阵中,若数值为0的元素数目远远多于非0元素的数目时,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。
中文名
稀疏矩阵
外文名
sparse matrix
类    型
矩阵
应    用
数值分析

目录

  1. 1 定义
  2. 2 优点
  3. 3 存储空间
  4. 4 创建转换
  1. 5 运算
  2.  原理简介
  3.  例一
  4.  例二
  5.  特例
  1.  例三
  2.  方程组
  3.  例四
  4.  例五
  5.  例六

定义

编辑
矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素的分布没有规律,通常认为矩阵中非零元素的总数比上矩阵所有元素总数的值小于等于0.05时,则称该矩阵为稀疏矩阵(sparse matrix),该比值称为这个矩阵的稠密度;与之相区别的是,如果非零元素的分布存在规律(如上三角矩阵、下三角矩阵、对角矩阵),则称该矩阵为 特殊矩阵。

优点

编辑
稀疏矩阵的计算速度更快,因为M AT L A B只对非零元素进行操作,这是稀疏矩阵的一个突出的优点.
假设矩阵A,B中的矩阵一样.计算2*A需要一百万次的浮点运算,而计算2*B只需要2 0 0 0次浮点运算.
因为M AT L A B不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵.
前面章节中的算术和 逻辑运算都适用于稀疏矩阵.
对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节.但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费.为了节省存储空间,可以只存储其中的非0元素.
稀疏矩阵_第1张图片
对于矩阵Amn的每个元素aij,知道其行号i和列号j就可以确定其位置.因此对于稀疏矩阵可以用一个结点来存储一个非0元素.该结点可以定义如下:
[i,j,aij]
该结点由3个域组成,i:行号,j:列号;aij元素值.这样的结点被称为 三元组结点.矩阵的每一个元素Qij,由一个三元组结点(i,j,aij)唯一确定.
例如稀疏矩阵A:
50 0 0 0
10 0 20 0
0 0 0 0
-30 0 -60 5
其对应的三元组表为:
1 1 50
2 1 10
2 3 20
4 1 -30
4 3 -60
4 4 5

存储空间

编辑
稀疏矩阵_第2张图片 高斯
一个稀疏矩阵中有许多元素等于零,这便于矩阵的计算和保存.如果 Matlab把一个矩阵当作稀疏矩阵,那么只需在m×3的矩阵中存储m个非零项.第1列是行下标,第2列是列下标,第3列是非零元素值,不必保存零元素.如果存储一个 浮点数要8个字节,存储每个下标要4个字节,那么整个矩阵在内存中存储需要1 6×m个字节.
A = e y e ( 1 0 0 0 ) ;
得到一个1 0 0 0×1 0 0 0的 单位矩阵,存储它需要8 MB空间.如果使用命令:
B = s p e y e ( 1 0 0 0 ) ;
用一个1 0 0 0×3的矩阵来代表,每行包含有一个行下标,列下标和元素本身.只需2 4 K B的空间就可以存储1 0 0 0×1 0 0 0的单位矩阵,它只需要满单位矩阵的0 . 3 %存储空间.对于许多的广义矩阵也可这样来作.

创建转换

编辑
在M AT L A B中,用命令s p a r s e来创建一个稀疏矩阵.
命令集8 7创建稀疏矩阵
s p a r s e ( A )由非零元素和下标建立稀疏矩阵A.如果A已是一个稀疏矩阵,则返回A本身.
s p a r s e ( m , n )生成一个m×n的所有元素都是0的稀疏矩阵.
s p a r s e ( u , v , a )生成一个由长度相同的 向量u,v和a定义的稀疏矩阵.其中u和v是整数向量,a是一个实数或者复数向量.(ui, vi)对应值ai,如果a中有零元素,则将这个元素排除在外.
稀疏矩阵的大小为m a x (u)×m a x (v).
s p a r s e ( u , v , a , m , n )生成一个m×n的稀疏矩阵,(ui, vi)对应值ai.向量u,v和a必须长度相同.
s p a r s e ( u , v , a , m , n ,生成一个m×n的含有n z m a x个非零元素的稀疏矩阵.(ui,n z m a x )vi)对应值ai.n z m a x的值必须大于或者等于向量u和v的长度.
f i n d ( x )返回向量x中非零元素的下标.如果x=X是一
稀疏矩阵_第3张图片 稀疏矩阵
个矩阵,那么X的向量就作为一个长向量来考虑.
[ u , v ] = f i n d ( A )返回矩阵A中非零元素的下标.
[ u , v , s ] = f i n d ( A )返回矩阵A中非零元素的下标.用向量s中元素的值及u和v中相应的下标,实际上就是向量u,v和s作为命令s p a r s e的参数.
s p c o n v e r t ( D )将一个有三列的矩阵转换成一个稀疏矩阵.D中的第1列作为行的下标,第2列作为列的下标,最后一列作为元素值.而且可以使用命令f u l l将稀疏矩阵转换成一个满矩阵.
命令集8 8转换成满矩阵
f u l l ( S )将稀疏矩阵S转换成一个满矩阵.
a) 创建一个5×5的单位矩阵:
A = e y e ( 5 )
将矩阵A转换成稀疏矩阵B:
(b) 假设M AT L A B中给出如下的向量:
这样就有了 行向量,但是也可使用 列向量.运行命令S m a t r i x = s p a r s e ( i n d 1 , i n d 2 , n u m b e r ),
结果为:
其中有去掉了两个零元素.将这个矩阵转换成满矩阵,输入:
F u l l m a t r i x = f u l l ( S m a t r i x )
得到的结果为:
注意,稀疏矩阵和得到的满矩阵的大小是分别是由i n d 1和i n d 2中最大元素值确定的,即
使相应的值是零,并且在列出的稀疏矩阵中去掉这个值.
输入命令w h o s可得到:
可以看出虽然两个矩阵的大小相同,但是其中稀疏矩阵需要的存储空间更小些.
(c) 在处理稀疏矩阵时f i n d命令很有用.命令对于稀疏矩阵或者满矩阵都返回相同的结果.
返回得到的三个向量直接用来重新创建一个稀疏矩阵.令S m a t r i x定义在( b )中,运行命令:
得到的结果为:
用下面命令得到的矩阵和( b )中得到的矩阵是不一样的:

运算

编辑

原理简介

M AT L A B中对满矩阵的运算和函数同样可用在稀疏矩阵中.结果是稀疏矩阵还是满矩阵,
这取决于运算符或者函数及下列的操作数:
稀疏矩阵_第4张图片 稀疏矩阵的压缩存储
当函数用一个矩阵作为输入参数,输出参数为一个标量或者一个给定大小的向量时,输出参数的格式总是返回一个满阵形式,如命令s i z e.
当函数用一个标量或者一个向量作为输入参数,输出参数为一个矩阵时,输出参数的格式也总是返回一个满矩阵,如命令e y e.还有一些特殊的命令可以得到稀疏矩阵,如命令s p e y e.
对于单参数的其他函数来说,通常返回的结果和参数的形式是一样的,如d i a g.
对于双参数的运算或者函数来说,如果两个参数的形式一样,那么也返回同样形式的结果.在两个参数形式不一样的情况下,除非运算的需要,均以满矩阵的形式给出结果.
两个矩阵的组和[A B],如果A或B中至少有一个是满矩阵,则得到的结果就是满矩阵.
表达式右边的冒号是要求一个参数的运算符,遵守这些运算规则.
表达式左边的冒号不改变矩阵的形式.

例一

假设有:
这是一个5×5的单位满矩阵和相应的稀疏矩阵.
(a) C = 5*B,结果为:
这是一个稀疏矩阵.
(b) D = A + B,给出的结果为:
这是一个满矩阵.
(c) x = B \ h,结果为:
这是一个满向量.
有许多命令可以对非零元素进行操作.
命令集8 9矩阵的非零元素
n n z ( A )求矩阵A中非零元素的个数.它既可求满矩阵也可求稀疏矩阵.
s p y ( A )画出稀疏矩阵A中非零元素的分布.也可用在满矩阵中,在
这种情况下,只给出非零元素的分布.
s p y ( A , c s t r , s i z e )用指定的颜色c s t r(见表1 3 - 1 )和在s i z e规定的范围内画出稀疏
矩阵A中非零元素的分布.
n o n z e r o s ( A )按照列的顺序找出矩阵A中非零的元素.
s p o n e s ( A )把矩阵A中的非零元素全换为1.
s p a l l o c ( m , n ,产生一个m×n阶只有n z m a x个非零元素的稀疏矩阵.这样可以
n z m a x )有效地减少存储空间和提高运算速度.
n z m a x ( A )给出为矩阵A中非零 元素分配的内存数.不一定和n n z ( A )得
到的数相同;参见s p a r s e或者s p a l l o c.
i s s p a r s e ( A )如果矩阵A是稀疏矩阵,则返回1;否则返回0.
s p f u n ( f c n , A )用A中所有非零元素对函数f c n求值,如果函数不是对稀疏矩
阵定义的,同样也可以求值.
s p r a n k( A )求稀疏矩阵A的结构秩.对于所有的矩阵来说,都有
s p r a n k ( A)≥r a n k ( A ).

例二

用下面的命令定义稀疏矩阵:
创建一个大矩阵:
稀疏矩阵_第5张图片 稀疏矩阵
Big= kron(A, A)
这个矩阵B i g是什么样子呢?
K r o n e c k e r 张量积给出一个大矩阵,它的元素是矩阵A的元素之间可能的乘积.因为参量都是稀疏矩阵,所以得到的矩阵也是一个稀疏矩阵.可以用命令 w h o s和i s s p a r s e来确认一下.
查看矩阵B i g的结构图,可输入s p y ( B i g ),结构图如右图所示. 从图中可以看出B i g是一个块双对角矩阵.

特例

MATLAB中有四个基本稀疏矩阵,它们是单位矩阵, 随机矩阵,对称随机矩阵和对角矩阵.
命令集9 0单位稀疏矩阵
s p e y e ( n )生成n×n的单位稀疏矩阵.
s p e y e ( m , n )生成m×n的单位稀疏矩阵.
命令speye(A) 得到的结果和s p a r s e ( e y e ( A ) )是一样的,但是没有涉及到满阵的存储.
命令集9 1随机稀疏矩阵
s p r a n d ( A )生成与A有相同结构的随机稀疏矩阵,且元素服从均匀分布.
s p r a n d ( m , n , d e n s )生成一个m×n的服从均匀分布的随机稀疏矩阵,有d e n s×m×
n个非零元素,0≤d e n s≤1.参数d e n s是非零元素的分布密度.
s p r a n d ( m , n , d e n s ,生成一个近似的 条件数为1 /rc,大小为m×n的随机稀疏矩
r c )阵.如果rc=rc是一个长度为l≤l ( m i n (m, n) )的向量,那么
矩阵将rci作为它l个奇异值的第一个,其他的奇异值为0.
s p r a n d n ( A )生成与A有相同结构的随机稀疏矩阵,且元素服从 正态分布.
s p r a n d n ( m , n , d e n s ,生成一个m×n的服从正态分布的随机稀疏矩阵,和sprand
r c )一样.
s p r a n d s y m ( S )生成一个随机对称稀疏矩阵.它的下三角及主对角线部分与S的结构相同,矩阵元素服从正态分布.
s p r a n d s y m ( n , d e n s )生成一个m×n的随机对称稀疏矩阵.矩阵元素服从正态分布,分布密度为d e n s.
s p r a n d s y m ( n , d e n s ,生成一个近似 条件数为1 /rc的随机对称稀疏矩阵.元素以0r c )对称分布,但不是 正态分布.如果rc=rc是一个向量,则矩阵有 特征值rci.也就是说,如果rc是一个正向量,则矩阵是 正定矩阵.
s p r a n d s y m ( n , d e n s ,生成一个 正定矩阵.如果k= 1,则矩阵是由一正定对称矩r c , k )阵经随机J a c o b i旋转得到的,其条件数正好等于1 /rc;如果k= 2,则矩阵为 外积的换位和,其条件数近似等于1 /rc.
s p r a n d s y m ( S , d e n s ,生成一个与矩阵S结构相同的稀疏矩阵,近似 条件数为1 /rc.
r c , 3 )参数d e n s被忽略,但是这个参数在这个位置以便函数能确认最后两个参数的正确与否.

例三

(a) 假设有矩阵A:
输入R a n d o m = s p r a n d n ( A ),可得到随机稀疏矩阵:
矩阵中随机数的位置和矩阵A中非零元素的位置相同.
(b) 对于( a )中的矩阵A,输入:
B = s p r a n d s y m ( A )
结果为:
这是一个用矩阵A的下三角及主对角线部分创建的 对称矩阵,在非零元素的位置用随机数作为元素值.
用命令s p d i a g s可以取出对角线元素,并创建带状 对角矩阵.假设矩阵A的大小为m×n,
稀疏矩阵_第6张图片 稀疏矩阵
在p个 对角线上有非零元素.B的大小为m i n (m×n)×p,它的列是矩阵A的对角线.向量d的长度为p,其整型分量给定了A的对角元:
di0 主对角线上的对角线
命令集9 2对角稀疏矩阵
[ B , d ] = s p d i a g s ( A )求出A中所有的对角元,对角元保存在矩阵B中,它们的下标保存在向量d中.
s p d i a g s ( A , d )生成一个矩阵,这个矩阵包含有矩阵A中向量d规定的对角元.
s p d i a g s ( B , d , A ) 生成矩阵A,用矩阵B中的列替换d定义的对角元.
A = s p d i a g s ( B , d , m , n )用保存在由d定义的B中的对角元创建稀疏矩阵A.
例11 . 4给出了如何使用s p d i a g s命令来解普通微分方程组.

方程组

稀疏矩阵_第7张图片 稀疏矩阵
在许多实际应用中要保留稀疏矩阵的结构,但是在计算过程中的中间结果会减弱它的稀疏性,如L U分解.这就会导致增加浮点运算次数和存储空间.为了避免这种情况发生,在第稀疏矩阵1 2 9
M AT L A B中用命令对矩阵进行重新安排.这些命令都列在下面的命令集9 3中.通过h e l p命令
可以得到每个命令更多的帮助信息,也可见h e l p d e s k.
命令集9 3 矩阵变换
c o l m m d ( A )返回一个变换向量,使得矩阵A列的秩为最小.
s y m m m d ( A )返回使对称矩阵秩为最小的变换.
s y m r c m ( A )矩阵A的C u t h i l l - M c K e e逆变换.矩阵A的非零元素在 主对角线附近.
c o l p e r m ( A )返回一个矩阵A的列变换的向量.列按非零元素升序排列.有时这是L U 因式分解前有用的变换:lu(A(:, j)).如果A是一个对称矩阵,对行和列进行排序,这有利于C h o l e s k y分解:chol(A(j, j)).
r a n d p e r m ( n )给出正数1,2,. . .,n的随机排列,可以用来创建随机变换矩阵.
d m p e r m ( A )对矩阵A进行D u l m a g e - M e n d e l s o h n分解,输入help dmperm可得更多信息.

例四

创建一个秩为4的 变换矩阵,可输入:
一旦运行p e r m = r a n d p e r m ( 4 ),就会得到:
给出的变换矩阵为:
如果矩阵A为:
输入命令:
运行结果为:
有两个不完全 因式分解命令,它们是用来在解大 线性方程组前进行预处理的.用h e l p d e s k命令可得更多信息.命令集9 4不完全因式分解c h o l i n c ( A , o p t )进行不完全C h o l e s k y分解,变量o p t取下列值之一:
d r o p t o l指定不完全分解的舍入误差,0给出完全分解.
m i c h o l如果m i c h o l = 1,则从对角线上抽取出被去掉的元素.
r d i a g用s q r t ( d r o p t o l*n o r m ( X ( : , j ) ) )代替上三角分
解因子中的零元素,j为零元素所在的列.
[ L , U , P ]=返回矩阵X的不完全分解得到的三个矩阵L,U和P,变量o p t取
l u i n c ( X , o p t )下列值之一:
d r o p t o l指定分解的舍入误差.
m i l u改变分解以便从上三角角分解因子中抽取被去掉的列元素.
u d i a g用d r o p t o l值代替上三角角分解因子中的对角线上的零元素.
t h r e s h中心极限.
解稀疏线性方程组既可用左除运算符解,也可用一些特殊命令来解.
命令集9 5稀疏矩阵和线性方程组
s p p a r m s ( k e y s t r , o p )设置稀疏矩阵算法的参数,用help spparms可得详细信息.
s p a u g m e n t ( A , c )根据[ c*l A; A' 0 ]创建稀疏矩阵,这是二次线性方程组的最
小二乘问题.参见7 . 7节.
s y m b f a c t ( A )给出稀疏矩阵的C h o l e s k y和L U 因式分解的符号分解因子.
用help symbfact可得详细信息.
稀疏矩阵的 范数计算和普通满矩阵的范数计算有一个重要的区别.稀疏矩阵的 欧几里德范数不能直接求得.如果稀疏矩阵是一个小矩阵,则用n o r m ( f u l l ( A ) )来计算它的范数;但是对于大矩阵来说,这样计算是不可能的.然而M AT L A B可以计算出欧几里德范数的近似值,在计算 条件数时也是一样.
命令集9 6稀疏矩阵的近似欧几里德范数和条件数
n o r m e s t ( A )计算A的近似欧几里德范数, 相对误差为1 0-6.
n o r m e s t ( A , t o l )计算A的近似欧几里德范数,设置相对误差t o l,而不用缺省时的1 0-6.
[ n r m , n i t ] =计算近似n r m范数,还给出计算范数迭代的次数n i t.
n o r m e s t ( A )
c o n d e s t ( A )求矩阵A 条件数的1 -范数中的下界估计值.
[ c , v ]=求矩阵A的1 -范数中条件数的下界估计值c和向量v,使得
c o n d e s t ( A , t r )| |Av| | = ( | |A| | | |v| | ) / c.如果给定t r,则给出计算的过程.t r= 1,
给出每步过程;t r=-1,给出商c / r c o n d ( A ).

例五

假设给出:
用n o r m A p p r o x = n o r m e s t ( S p r s )计算出:
用t h e N o r m = n o r m ( f u l l ( S p r s ) )得:
为了找到它们之间的差别,计算d i f f e r e n c e = t h e N o r m - n o r m A p p r o x,得:
在许多应用中,n o r m e s t计算得到的近似值是一个很好的近似欧几里德范数,它的计算步数要比n o r m要少得多;可参见7 . 6节.
用e t r e e命令来找到稀疏对称矩阵的消元树,用向量f来描述消元树,还可用e t r e e p l o t命令画出来.元素fi是矩阵的上三角C h o l e s k y分解因子中i行上第1非零元素的列下标.如果有非零元素,则fi= 0.消元树可以这样来建立:
节点i是fi的孩子,或者如果fi= 0,则节点i是树的根节点.
命令集9 7矩阵的消元树
e t r e e ( A )求A的消元树向量f,这个命令有可选参数;输入h e l p
e t r e e获取帮助.
e t r e e p l o t ( A )画出向量f定义的消元树图形.
t r e e p l o t ( p , c , d )画出指针向量p的树图形,参数c和d分别指定节点的颜色和分支数.e t r e e p l o t可以调用这个命令.
t r e e l a y o u t显示树的结构,t r e e p l o t可以调用这个命令.

例六

假设有对称稀疏矩阵B:
运行命令b t r e e = e t r e e ( B ),结果为:
开始的数字2不难理解,它是矩阵的第1列上第1个非零元素的行数,它决定了在C h o l e s k y分解因子的第1行第2列处有一个非零元素.当缩减第1列的元素时就得到第2列的数字5.B在缩减后,在( 5 , 2 )位置的元素是非零的,这样消元树向量中第2个元素的值为5.
s p y ( c h o l ( B ) )给出了C h o l e s k y分解因子的结构图,如图9 - 2所示:
图9-2 Cholesky分解结构图
图9-3 矩阵B的消元树
这个向量消元树可以这样来建立:上三角中只有一行有非零元素,节点8,因此这就是树
稀疏矩阵_第8张图片 稀疏矩阵
唯一的根.节点1是节点2的孩子,节点2和3是节点5的孩子,而节点5是节点6的孩子.节点4和6是节点7的孩子,而节点7又是节点8的孩子,即根的孩子.
命令e t r e e p l o t ( B )给出了树的结构图,如图9 - 3所示.
消元树的形状取决于列和行序,它可以用来分析消元过程.
用g p l o t命令可以画出坐标和矩阵元素间的联系图形.必须在n×2的矩阵中给出n个坐标,
矩阵的每一行作为一个点.这样就创建出点点之间连接的n×n矩阵,如果点4连接到点8,则(4, 8)的值为1.由于是一个大矩阵,而且非零元素较少,所以它应该被建成稀疏矩阵.
这个图可以说明网络问题,如传递问题.它还包含有 线性方程组中未知量之间的相关信息.
命令集9 8网络图形
g p l o t ( A , K )如果矩阵A的a(i, j)不为0,则将点ki连接到点kj.K是一个n×
2的坐标矩阵,A是一个n×n的关联矩阵.
g p l o t ( A , K , s t r )用字符串s t r给定的颜色和线型画出的同上图形.字符串s t r的
取值参见表1 3 - 1.
[ X , A ] = u n m e s h ( E )求 网格边界矩阵E的L a p l a c e矩阵A和网格点的坐标矩阵X.
例七
假设有下面的坐标矩阵K和关联矩阵A:
矩阵A在稀疏化后,用命令g p l o t ( A , K )画出图9 - 4,给出了点(0, 1)和点(4, 1)之间所有可能的路径.

你可能感兴趣的:(知识储备)