RegionServer这种类LSM存储引擎需要不断的进行Compaction来减少磁盘上数据文件的个数和删除无用的数据从而保证读性能。
RegionServer后台有一组负责flush region的线程(MemStoreFlusher),每次从flushQueue中拿出一个flush region请求,会检查这个region是否有某个store包含的storefile个数超过配置
hbase.hstore.blockingStoreFiles,默认7,如果超过,说明storefile个数已经到了会影响读性能的地步,那么就看这个flush region
请求是否已经有blockingWaitTime(hbase.hstore.blockingWaitTime,默认90s)没有执行了,如果是,这时候需要立即执行flush region,为了防止OOM。如果没有超过blockingWaitTime,那么先
看看region是否需要分裂,如果不需要,则向后台的CompactionSplitThread请求做一次
Compaction(从这里可以看出,split优先级比compaction高),然后重新将这个flush region加入
flushQueue,延后做flush.
重点看Compaction
Compaction以store为单位,
CompactSplitThread会为region的每个store生成一个CompactionRequest.
一个Compaction根据它包含的storefile的总大小,可以分为
large compaction和small compaction,这两种compaction分别被两个不同的线程池处理。
系统一般认为small compaction占大多数,所以上文中由于storefile过多系统自动触发的system compaction 默认放入small compaction池子中处理.
//系统自动触发的system compaction,selectNow参数为false,实际选取待compact的
filelist过程延后在CompactionRunner中做.
if (selectNow) {
// 通过hbase shell触发的major compaction,selectNow为true.这里进行实际的选取待compact filelist操作
compaction = selectCompaction(r, s, priority, request);
if (compaction == null) return null; // message logged inside
}
// We assume that most compactions are small. So, put system compactions
//into small pool; we will do selection there, and move to large pool if //necessary.
long size = selectNow ? compaction.getRequest().getSize() : 0;
// 从这里可以看出,用户外部触发的compaction默认放入small compaction线程池中处理,并且
// system compaction 也会放入small compaction线程池中,后续真正执行
// system compaction时,会根据选出的storefile的总大小来决定最终放入large还是small线程池
ThreadPoolExecutor pool = (!selectNow && s.throttleCompaction(size))? largeCompactions : smallCompactions;
pool.execute(new CompactionRunner(s, r, compaction, pool));
看看执行compaction过程的CompactionRunner任务。
// Common case - system compaction without a file selection. Select now.
// system compaction 还没有选择待compact的filelist,为null
if (this.compaction == null) {
int oldPriority = this.queuedPriority;
this.queuedPriority = this.store.getCompactPriority();
if (this.queuedPriority > oldPriority) {
// Store priority decreased while we were in queue (due to some other compaction?),
// requeue with new priority to avoid blocking potential higher priorities.
this.parent.execute(this);
return;
}
try {
// 选择storefile
this.compaction = selectCompaction(this.region, this.store, queuedPriority, null);
} catch (IOException ex) {
LOG.error("Compaction selection failed " + this, ex);
server.checkFileSystem();
return;
}
if (this.compaction == null) return; // nothing to do
// Now see if we are in correct pool for the size; if not, go to the correct one.
// We might end up waiting for a while, so cancel the selection.
assert this.compaction.hasSelection();
// 判断这次compaction放入small还是large池中执行
ThreadPoolExecutor pool = store.throttleCompaction(
compaction.getRequest().getSize()) ? largeCompactions : smallCompactions;
// system compaction应该放入large池
if (this.parent != pool) {
this.store.cancelRequestedCompaction(this.compaction);
this.compaction = null;
this.parent = pool;
// 在large池子中执行
this.parent.execute(this);
return;
}
}
large compaction和small compaction分界线由
hbase.regionserver.thread.compaction.throttle参数决定,如果没有设置,
默认为2 * hbase.hstore.compaction.max * hbase.hregion.memstore.flush.size
全部取默认值等于2*10*128MB = 2.5GB
从以上可以看出,system compaction默认放入small池,当选出storefile list
后,再根据size去判断最终放入small还是large线程池中执行.
对于外部触发的compaction,放入small中执行.
选定池子后,下面看每个store compaction具体的步骤
两个步骤:
这两步都在CompactionRunner这个runnable任务中完成。
这里主要说第一个步骤:入口在HStore::requestCompaction.
首先创建storeEngine相应的CompactionContext,这个context用来存各种compact相关的信息,
最重要的就是CompactionRequest,作为上面第二个步骤的输入. HBase 0.98主要有两种存储引擎,DefaultStoreEngine和StripeStoreEngine,这里的存储引擎主要是管理磁盘上的storefile文件和flush 内存中的snapshot memstore到磁盘。StripStoreEngine比较特别,
一个snapshot memstore刷到磁盘上有可能多于一个storefile文件,这里不讨论.大部分人都使用默认的storeEngine.
其次,创建完context后,然后调用compactionPolicy的selectCompaction(),将store下面的所有storefile传进去,供其挑选.HBase的compaction policy可通过
配置项hbase.hstore.defaultengine.compactionpolicy.class配置,默认是
ExploringCompactionPolicy.class
下面看selectCompaction(),主要有几个步骤:
从store下面的storefiles中过滤掉比正在compacting的storefilelist中最新的storefile更老的storefile(输入的storefile按照如下规则排序)
public static final Comparator<StoreFile> SEQ_ID =
Ordering.compound(ImmutableList.of(
Ordering.natural().onResultOf(new GetSeqId()),
Ordering.natural().onResultOf(new GetFileSize()).reverse(),
Ordering.natural().onResultOf(new GetBulkTime()),
Ordering.natural().onResultOf(new GetPathName())
));
seq id是storefile对应的snapshot memstore在flush时,从region内部的全局递增计
数器sequenceId中取到的,可以看到,seq id越大的storefile越新.对多个文件进行compact后产生的新的storefile的seq id被设置为多个文件中最大的seq id
根据一些规则和参数,判断是否升级为major compaction,比较烦,直接贴代码
// Force a major compaction if this is a user-requested major compaction,
// or if we do not have too many files to compact and this was requested
// as a major compaction.
// Or, if there are any references among the candidates.
boolean majorCompaction = (
(forceMajor && isUserCompaction)
|| ((forceMajor || isMajorCompaction(candidateSelection))
&& (candidateSelection.size() < comConf.getMaxFilesToCompact()))
|| StoreUtils.hasReferences(candidateSelection)
);
如果不是,那么这次compaction是一个minor compaction,做以下几件事
检查是否选出来的storefile个数超过hbase.hstore.compaction.max,如果超过,并且
这只是minor compaction,则从storefile文件集合尾部将多余的storefile过滤掉,如果超过但是是major compaction并且是用户发起的,则不过滤.至此,这次compact的storefile集合产生,结束。
至此,第一个步骤结束,compact的目标storefile选出.