- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- 【运动规划算法项目实战】如何使用Apollo Math模块实现碰撞检测(附ROS C++代码)
Xiewf8128
运动规划算法项目实战c++人工智能机器人自动驾驶算法
文章目录前言一、简介1.1AABB碰撞检测:2.2SAT碰撞检测:二、Apollo碰撞检测实现代码讲解2.1Box2d类数据成员方法2.2碰撞检测的具体实现三、使用ApolloMath模块实现碰撞检测(ROS)3.1完整代码3.2RVIZ显示四、总结五、参考前言在自动驾驶和机器人算法领域,碰撞检测是一项至关重要的任务。为了确保车辆或机器人能够安全地避免与障碍物发生碰撞,开发者需要使用高效准确的碰撞
- 人工智能机器学习深度学习中著名有用的数据集
AI数据集
人工智能机器学习深度学习
在人工智能、机器学习和深度学习领域,优质的数据集是模型训练和发展的基石。以下介绍一些当前比较有名且有用的数据集。目录图像领域自然语言处理领域语音领域其他领域图像领域MNIST数据集内容:由美国国家标准与技术研究院收集整理,包含6万张用于训练的手写数字图像、1万张用于测试验证的图像,图像为28×28像素的灰度图,像素值在0到255之间。用途:主要用于图像分类任务,特别是手写数字识别,是初学者学习图像
- 【人工智能机器学习基础篇】——深入详解监督学习之模型评估:掌握评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术
猿享天开
人工智能数学基础专讲人工智能机器学习深度学习
深入详解监督学习之模型评估在监督学习中,模型评估是衡量模型性能的关键步骤。有效的模型评估不仅能帮助我们理解模型在训练数据上的表现,更重要的是评估其在未见数据上的泛化能力。本文将深入探讨监督学习中的模型评估方法,重点介绍评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术,并通过示例代码帮助读者更好地理解和应用这些概念。目录模型评估的重要性评估指标详解准确率(Accuracy)精确率(Pre
- 产品经理的大语言模型课 01 - 人工智能的一些基本概念
平头某
产品经理人工智能
文章目录前言人工智能机器学习深度学习一张图总结前言随着人工智能技术的爆火,我断断续续地思考:作为产品经理,在人工智能飞速发展的当下,需要了解哪些知识,才能将人工智能的技术应用到产品和业务当中?期间也学习了不少人工智能的知识,看了很多科普的性质的内容,往往又过于零散,不成体系,往往是从一个名词查起,冒出了大量陌生的名词,没有一个清晰的路径让我快速构建整个知识框架。所以只得全看一些更详细的“教程”内容
- 人工智能就业趋势分析:机遇、挑战与未来展望
竹木有心
人工智能发展人工智能
一、人工智能就业市场现状:供需两旺的“黄金赛道”2025年春招市场数据显示,人工智能行业已成为就业市场最活跃的领域之一。招聘平台数据显示,AI相关岗位求职人数同比增长33.4%,机器人算法工程师、调试工程师等岗位招聘增速超30%^1^2。杭州、深圳等城市凭借产业集群优势,成为AI人才聚集高地。例如,杭州某大型线下招聘会上,830家企业推出的2.1万个岗位中,半数聚焦AI算法与大模型开发,硬件类岗位
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- 金三银四快过去一半了,是时候加把劲了
后端go找工作面试
从复旦春招会的15000+岗位争夺战,到AI算法岗年薪百万的“神仙打架”,再到游戏行业20:1的残酷竞争比,今年的金三银四像极了《三体》里的黑暗森林:机会看似遍地,但稍有不慎就成了别人的“背景板”。但现实真的是“投晚了就凉了”吗?数据告诉你真相:智联研究院统计显示,算法工程师、机器人算法工程师等岗位需求同比激增44%,而中小企业的“捡漏窗口”才刚开启。这半个月,我整理了20+场面试实录(含小鹅通、
- 机器学习驱动的智能化电池管理技术与应用
萌萌可爱郭德纲
机器学习人工智能
电池管理技术概述电池的工作原理与关键性能指标电池管理系统的核心功能ØSOC估计ØSOH估计Ø寿命预测Ø故障诊断人工智能机器学习基础人工智能的发展机器学习的关键概念机器学习在电池管理中的应用案例介绍人工智能在电池荷电状态估计中的应用荷电状态估计方法概述基于迁移学习的SOC估计(1)基于迁移学习的SOC估计方法数据集、估计框架、估计结果(2)全生命周期下的SOC估计方法数据集、估计框架、估计结果基于数
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- 深入详解人工智能机器学习:强化学习
猿享天开
人工智能基础知识学习人工智能机器学习强化学习
目录强化学习概述强化学习的基本概念定义关键组件强化学习过程常用算法应用示例示例代码代码解释应用场景强化学习核心概念和底层原理核心概念底层原理总结强化学习概述强化学习(ReinforcementLearning,RL)是机器学习中的一个重要领域,其核心目标是通过与环境的交互学习如何采取行动以最大化累积奖励。与监督学习不同的是,强化学习不依赖于给定的输入输出对,而是通过试探和反馈不断改进决策策略。强化
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 深入详解人工智能机器学习算法——逻辑回归算法
猿享天开
人工智能基础知识学习人工智能机器学习算法逻辑回归
引言逻辑回归(LogisticRegression)是机器学习中一种基本而重要的分类算法。在这篇文章中,我们将深入解析逻辑回归的各个方面,包括其基础知识、数学原理、实现方法、以及应用场景。我们还将通过具体的代码示例和应用案例,帮助您全面理解逻辑回归算法。第一部分:逻辑回归的基础知识1.1什么是逻辑回归?逻辑回归是一种用于解决二分类问题的回归分析方法。尽管名字中带有“回归”,逻辑回归的目标是将预测结
- 人工智能机器学习基本概念详解
猿享天开
人工智能基础知识学习机器学习人工智能
人工智能机器学习基本概念详解机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)的一个重要分支,旨在让计算机系统自动从数据中学习并进行预测或决策,而无需明确的编程指令。本文将详细探讨机器学习的基本概念,包括监督学习、无监督学习、强化学习及其应用示例。一、机器学习的基本概念1.1数据数据是机器学习的基础。机器学习模型通过分析数据来识别模式和
- CMU和ETH联合研发了一个名为 「敏捷但安全」的新框架,为四足机器人在复杂环境中实现高速运动提供了解决方案
xwz小王子
机器人强化学习及自动驾驶安全机器人
在高速机器人运动领域,实现同时兼顾速度和安全一直是一大挑战。但现在,卡内基梅隆大学(CMU)和苏黎世联邦理工学院(ETH)的研究团队带来了突破性进展。他们开发的新型四足机器人算法,不仅能在复杂环境中高速行进,还能巧妙避开障碍,真正做到了「敏捷而安全」。论文地址:https://arxiv.org/pdf/2401.17583.pdf在ABS的加持下,机器狗在各种场景下都展现出了惊艳的高速避障能力:
- 基于新版PyCharm、Anaconda3、django3框架开发内容发布系统
mys328
pycharmdjangoide
1:环境安装搭建python有多个版本,可通过Anaconda3来管理python版本从而在多个版本之间进行切换。原先我们团队使用的环境是Anaconda3-2019.07、pycharm-professional-2018.3.5、python3.7,并做了一些爬虫项目,后来由于人工智能机器学习的需要,于是升级版本,使用新的2023版本的,Anaconda3-2023.07-1,pycharm-
- 花书学习笔记-深度学习概念
iwill323
人工智能深度学习
目录什么是机器学习函数类别机器学习举例步骤第一步:猜测函数第二步:定义Loss第三步:优化从线性到非线性:从函数逼近的角度理解多个特征变量逼近连续曲线表示更有弹性的模型总结用多个Featuresigmoid->ReLU从机器学习到深度学习早期的人工智能机器学习表征学习(representationlearning)深度学习总结主题SupervisedLearningSelf-supervisedL
- 【深度学习】初识深度学习
wmh1024
深度学习人工智能
初识深度学习什么是深度学习关系:人工智能机器学习深度学习卷积神经网络深度学习和机器学习的关系:机器学习:随着数据量增加会改进性能的算法深度学习:使用多层神经网络学习。深度学习是机器学习的子集。传统系统和深度学习的区别:传统编程系统:定义规则,输入数据获取输出(定义f(x)、x求得y)深度学习系统:输入答案和数据,输出规则(定义x、y求得f(x),且f(x)具有泛化性)规则f(x)规则f(x)数据x
- 机器学习 | 深入理解并掌握核心概念
亦世凡华、
#机器学习机器学习人工智能深度学习基础概念经验分享
在如今数字化时代的浪潮下,机器学习已经成为人工智能领域的璀璨明星。它像一面魔镜,赋予计算机系统学习和改进的能力,让机器能够从海量数据中提取规律、预测未来,甚至做出智能决策。本专栏将带您踏上机器学习的奇妙之旅,探索其原理、方法和应用。我们将揭开机器学习背后的神秘面纱,解释监督学习、无监督学习、强化学习等不同类型的机器学习算法。目录初识人工智能机器学习概述机器学习算法分类模型评估深度学习概述Jupyt
- 2022国内十大工业级三维视觉引导企业一览
工业机器视觉前沿
工业级机器视觉3D机器视觉机器视觉上下料工业机器人拆码垛
小编今天收集了一下我国本土的工业级3D视觉引导的企业,让我们一起来看看它们是谁?梅卡曼德梅卡曼德(北京)机器人科技有限公司在3D感知、视觉和机器人算法、机器人软件、行业应用方案方面均有积累;AI+3D+工业机器人解决方案已在汽车、工程机械、物流、3C等领域应用,范围涵盖视觉引导拆码垛、工件上料、货品播种、高精度定位/装配、自动生成轨迹涂胶/开坡口、质量检测等。星猿哲星猿哲科技(上海)有限公司在3D
- Python基础语法
Python私教
pythonpythonchrome开发语言
计算机的组成硬件系统CPU:中央处理器存储器:内存,外存输入设备:鼠标,键盘输出设备:显示器,打印机软件系统系统软件:操作系统应用软件:微信、QQ、浏览器等Python简介Python是非常流行的编程语言,主要是因为:简单、易学、适应人群广泛免费、开源应用领域广泛自动化运维自动化测试网络爬虫数据分析人工智能机器学习Web开发注释注释的作用:对代码做解释说明,提高代码的可读性,便于别人阅读代码。被注
- ROS Gazebo的基本使用
K-Liberty
人工智能机器人c++
Gazebo提供了一个实时的三维虚拟环境,用于模拟各种复杂的真实世界条件,包括光照、地形、物理碰撞以及传感器模型(如激光雷达、摄像头等)。通过ROS和Gazebo的结合,开发者可以在无需实际硬件的情况下设计、测试和验证机器人算法及系统。一、Gazebo的主要特点:三维仿真:提供高保真度的视觉效果和真实的物理引擎,使得机器人的运动和交互行为能够尽可能接近真实情况。丰富的模型库:内置了大量不同类型的机
- 人工智能-机器学习-深度学习 概念整理
洛杉矶县牛肉板面
深度学习机器学习深度学习人工智能
目录1.人工智能-ArtificialIntelligence2.机器学习-MachineLearning3.深度学习-DeepLearning4.人工智能机器学习深度学习三者之间的关系5.人工智能的流派6.特征工程-FeatureEngineering7.表示学习8.贡献度分配9.独热码10.word2vec11.神经网络12.端到端学习1.人工智能-ArtificialIntelligence
- Ubuntu从ISO创建USB启动盘的工具
python测试开发
图片.pngStartupDiskStartupDiskCreator是Ubuntu中的内置应用程序。要使用它,启动盘创建程序Ubuntu图片.png参考资料讨论qq群630011153144081101本文涉及的python测试开发库谢谢点赞!本文相关海量书籍下载2018最佳人工智能机器学习工具书及下载(持续更新)UNetBootin安装sudoadd-apt-repositoryppa:gez
- 机器人算法——costmap膨胀层InflationLaye
Jack Ju
自动驾驶算法笔记机器人算法
如下图是更新地图膨胀voidInflationLayer::updateCosts(costmap_2d::Costmap2D&master_grid,intmin_i,intmin_j,intmax_i,intmax_j){//用指针master_array指向主地图,并获取主地图的尺寸,确认seen_数组被正确设置。boost::unique_locklock(*inflation_acces
- 学习笔记目录
雪的期许
gopython机器学习
文章目录⌨️编程基础编程语言工具使用️人工智能机器学习书籍/仓库经典算法评估指标深度学习书籍/仓库模型/数据加工优化方法⌨️编程基础编程语言go语言学习笔记工具使用git使用笔记️人工智能机器学习书籍/仓库机器学习资料-张北海经典算法Bagging和Boosting概念及区别随机森林–Randomforest(Bagging方法)XGBoost的原理、公式推导、Python实现和应用评估指标多分类
- 机器人算法—ROS TF坐标变换
Jack Ju
自动驾驶算法笔记机器人算法
1.TF基本概念(1)什么是TF?TF是TransformationsFrames的缩写。在ROS中,是一个工具包,提供了坐标转换等方面的功能。tf工具包,底层实现采用的是一种树状数据结构,根据时间缓冲并维护多个参考系之间的坐标变换关系,可以帮助程序员在任意时间,将点、向量等数据的坐标,在两个参考系中完成坐标变换。(2)为什么需要坐标转换?坐标转换最主要要解决的是位置和姿态问题。(3)什么是位置?
- 机器学习背景介绍与基本概念
盛夏未来
机器学习算法基础机器学习监督学习回归深度学习
机器学习背景介绍与基本概念人工智能机器学习神经网络深度学习基本概念数据挖掘和机器学习的关系训练数据/验证数据/测试数据监督学习/无监督学习/半监督学习回归/分类/聚类人工智能人工智能(ArtificialIntelligence),英文缩写为AI。是指使用某种算法来实现机器来模拟人的智能或者超越人的智能。人工智能并不是指任何的具体的算法,它只是一个模糊的、大概的概念。机器学习机器学习(Machin
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http