HDU 1043 Eight POJ 1077 Eight (广度搜索,八数码问题,康托展开)

HDU 1043  和  POJ 1077   两题类似。。。但是输入不同。

HDU 上是同时多组输入,POJ是单组输入。

两个限时不同。

HDU 上反向搜索,把所有情况打表出来。

POJ上正向搜索。

 

这个题很经典,还需要继续做。先把第一次写的代码贴出来吧。

继续优化中

 

 

 

HDU 1043 

Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7145    Accepted Submission(s): 1946
Special Judge


Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
 

 

Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8
 

 

Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
 

 

Sample Input
2 3 4 1 5 x 7 6 8
 

 

Sample Output
ullddrurdllurdruldr
 

 

Source
 

 

Recommend
JGShining
 
 
/*

HDU 1043 Eight

思路:反向搜索,从目标状态找回状态对应的路径

用康托展开判重





AC   G++  328ms  13924K



*/

#include<stdio.h>

#include<string.h>

#include<iostream>

#include<queue>

#include<string>

using namespace std;

const int MAXN=1000000;//最多是9!/2

int fac[]={1,1,2,6,24,120,720,5040,40320,362880};//康拖展开判重

//         0!1!2!3! 4! 5!  6!  7!   8!    9!

bool vis[MAXN];//标记

string path[MAXN];//记录路径

int cantor(int s[])//康拖展开求该序列的hash值

{

    int sum=0;

    for(int i=0;i<9;i++)

    {

        int num=0;

        for(int j=i+1;j<9;j++)

          if(s[j]<s[i])num++;

        sum+=(num*fac[9-i-1]);

    }

    return sum+1;

}

struct Node

{

    int s[9];

    int loc;//“0”的位置

    int status;//康拖展开的hash值

    string path;//路径

};

int move[4][2]={{-1,0},{1,0},{0,-1},{0,1}};//u,d,l,r

char indexs[5]="durl";//和上面的要相反,因为是反向搜索

int aim=46234;//123456780对应的康拖展开的hash值

void bfs()

{

    memset(vis,false,sizeof(vis));

    Node cur,next;

    for(int i=0;i<8;i++)cur.s[i]=i+1;

    cur.s[8]=0;

    cur.loc=8;

    cur.status=aim;

    cur.path="";

    queue<Node>q;

    q.push(cur);

    path[aim]="";

    while(!q.empty())

    {

        cur=q.front();

        q.pop();

        int x=cur.loc/3;

        int y=cur.loc%3;

        for(int i=0;i<4;i++)

        {

            int tx=x+move[i][0];

            int ty=y+move[i][1];

            if(tx<0||tx>2||ty<0||ty>2)continue;

            next=cur;

            next.loc=tx*3+ty;

            next.s[cur.loc]=next.s[next.loc];

            next.s[next.loc]=0;

            next.status=cantor(next.s);

            if(!vis[next.status])

            {

                vis[next.status]=true;

                next.path=indexs[i]+next.path;

                q.push(next);

                path[next.status]=next.path;

            }

        }

    }



}

int main()

{

    char ch;

    Node cur;

    bfs();

    while(cin>>ch)

    {

        if(ch=='x') {cur.s[0]=0;cur.loc=0;}

        else cur.s[0]=ch-'0';

        for(int i=1;i<9;i++)

        {

            cin>>ch;

            if(ch=='x')

            {

                cur.s[i]=0;

                cur.loc=i;

            }

            else cur.s[i]=ch-'0';

        }

        cur.status=cantor(cur.s);

        if(vis[cur.status])

        {

            cout<<path[cur.status]<<endl;

        }

        else cout<<"unsolvable"<<endl;

    }

    return 0;

}

 

 

 

 

POJ  1077

 

Eight
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18379   Accepted: 8178   Special Judge

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
 1  2  3  4 
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
 1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
 1  2  3 
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr

Source

 
 
 
/*

POJ 1077 Eight

正向广度搜索

把“x"当初0



G++ AC 5200K 719ms





*/



#include<stdio.h>

#include<queue>

#include<string.h>

#include<iostream>

#include<algorithm>

using namespace std;

const int MAXN=1000000;

int fac[]={1,1,2,6,24,120,720,5040,40320,362880};//康拖展开判重

//         0!1!2!3! 4! 5!  6!  7!   8!    9!

bool vis[MAXN];//标记



int cantor(int s[])//康拖展开求该序列的hash值

{

    int sum=0;

    for(int i=0;i<9;i++)

    {

        int num=0;

        for(int j=i+1;j<9;j++)

          if(s[j]<s[i])num++;

        sum+=(num*fac[9-i-1]);

    }

    return sum+1;

}

struct Node

{

    int s[9];

    int loc;//“0”的位置,把“x"当0

    int status;//康拖展开的hash值

    string path;//路径

};

string path;

int aim=46234;//123456780对应的康拖展开的hash值

int move[4][2]={{-1,0},{1,0},{0,-1},{0,1}};//u,d,l,r

char indexs[5]="udlr";//正向搜索

Node ncur;

bool bfs()

{

    memset(vis,false,sizeof(vis));

    Node cur,next;

    queue<Node>q;

    q.push(ncur);

    while(!q.empty())

    {

        cur=q.front();

        q.pop();

        if(cur.status==aim)

        {

            path=cur.path;

            return true;

        }

        int x=cur.loc/3;

        int y=cur.loc%3;

        for(int i=0;i<4;i++)

        {

            int tx=x+move[i][0];

            int ty=y+move[i][1];

            if(tx<0||tx>2||ty<0||ty>2)continue;

            next=cur;

            next.loc=tx*3+ty;

            next.s[cur.loc]=next.s[next.loc];

            next.s[next.loc]=0;

            next.status=cantor(next.s);

            if(!vis[next.status])

            {

                vis[next.status]=true;

                next.path=next.path+indexs[i];



                if(next.status==aim)

                {

                    path=next.path;

                    return true;

                }



                q.push(next);

            }

        }

    }

    return false;

}

int main()

{

    char ch;

    while(cin>>ch)

    {

        if(ch=='x') {ncur.s[0]=0;ncur.loc=0;}

        else ncur.s[0]=ch-'0';

        for(int i=1;i<9;i++)

        {

            cin>>ch;

            if(ch=='x')

            {

                ncur.s[i]=0;

                ncur.loc=i;

            }

            else ncur.s[i]=ch-'0';

        }

        ncur.status=cantor(ncur.s);

        if(bfs())

        {

            cout<<path<<endl;

        }

        else cout<<"unsolvable"<<endl;

    }

    return 0;

}

 

 

 

这个题目我的做法是把“x"当成0的。

网上很多当成9的话很多不一样了,特意说明下。

康托展开很简单,百度百科上的很容易理解。

谢谢

------------------------------kuangbin

你可能感兴趣的:(poj)