- 入门篇,带你了解CPU, GPU, TPU, NPU, DPU
今夕是何年,
视觉算法部署深度学习算法人工智能
目录CPU(中央处理器)GPU(图形处理器)TPU(张量处理单元)NPU(神经网络处理器)DPU(数据处理器)CPU(中央处理器)专业介绍:CPU是计算机系统的核心,负责执行操作系统和应用程序的指令。它由多个核心组成,每个核心可以独立执行任务。CPU的设计重点是处理复杂的逻辑运算和顺序任务,如分支预测、指令调度等。现代CPU通常包含多个层级的缓存(如L1、L2和L3缓存),以减少访问主存储器的延迟
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- torch.stack()方法在数据集构造中的应用
大多_C
pytorch人工智能python
torch.stack()是PyTorch中用于将多个张量沿着新维度进行堆叠的操作。在你的代码中,e1_encodings和e2_encodings是从每个句子中提取的和的向量,形状为[hidden_size]。当我们对它们使用torch.stack()时,多个向量会堆叠成一个新的二维张量,形状为[num_sentences,hidden_size],其中num_sentences是句子的数量。如
- pytorh基础知识和函数的学习:torchvision.transforms()
深蓝海拓
机器视觉和人工智能学习学习pytorch
transforms是PyTorch的torchvision库中用于图像处理的一个模块。它提供了一组工具,用于在图像数据集上进行常见的预处理和数据增强操作,以便更好地训练深度学习模型。以下是一些常用的torchvision.transforms转换:基础图像转换:transforms.ToTensor():将PIL图像或NumPy数组转换为PyTorch的张量,并将像素值范围从[0,255]缩放到
- 【pytorch】register_buffer的使用
Aha_aho
pytorch人工智能python
这篇文章讲解很清晰,以下内容仅做补充,探讨哪些对象需要手动注册,哪些会自动注册。在PyTorch中,哪些对象会自动注册为模型的一部分取决于它们的类型以及你如何定义它们。下面列出不需要手动注册、会自动注册的几种情况:1.nn.Parameter自动注册:任何你在nn.Module中定义为nn.Parameter的张量都会自动注册为模型的参数。它们会被视为模型的可训练参数,并且会被包含在模型的stat
- 【AI】张量的秩(阶)与矩阵的秩和阶的区别
栏杆拍遍看吴钩
MindSpore人工智能矩阵线性代数mindspore
在阅读MindSpore文档时,笔者对这段话不太理解,遂求助ChatGPT.矩阵的秩是矩阵中线性无关的行或者列,矩阵的阶就是矩阵中的行数和列数。而张量的秩和阶是一个概念,指的是张量的维度(是1维的,二维的还是高维的)
- 深度学习框架 人工智能操作系统 训练&前向推理 PyTorch Tensorflow MindSpore caffe 张量加速引擎TBE 深度学习编译器 多面体 polyhedral AI集群框架
EwenWanW
深度学习人工智能pytorch深度学习编译器
深度学习框架人工智能操作系统训练&前向推理深度学习框架发展到今天,目前在架构上大体已经基本上成熟并且逐渐趋同。无论是国外的Tensorflow、PyTorch,亦或是国内最近开源的MegEngine、MindSpore,目前基本上都是支持EagerMode和GraphMode两种模式。AI嵌入式框架OneFlow&清华计图Jittor&华为深度学习框架MindSpore&旷视深度学习框架MegEn
- CVPR 2021 | 即插即用! CA:新注意力机制,助力分类/检测/分割涨点!
Akita·wang
文献解析paperpython机器学习人工智能深度学习计算机视觉
摘要最近关于移动网络设计的研究已经证明了通道注意(例如,挤压和激发注意)对于提升模型性能的显著效果,但是它们通常忽略位置信息,而位置信息对于生成空间选择性注意图是重要的。本文提出了一种新的移动网络注意机制,将位置信息嵌入到信道注意中,我们称之为“协同注意”。与通过2D全局汇集将特征张量转换为单个特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,这两个过程分别沿两个空间方向
- pytorch torch.matmul函数介绍
qq_27390023
pytorch人工智能python
torch.matmul是PyTorch中用于进行矩阵乘法的函数。它可以执行两维矩阵、向量和更高维张量之间的乘法运算,支持的运算取决于输入张量的维度。1.函数签名torch.matmul(input,other,out=None)input:左乘的张量。other:右乘的张量。out:可选,用于存储输出结果的张量。2.不同维度的乘法规则torch.matmul根据输入张量的维度执行不同类型的乘法:
- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- pytorch torch.norm函数介绍
qq_27390023
pytorch人工智能python
torch.norm函数用于计算张量的范数(norm),可以理解为张量的“长度”或“大小”。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算向量和矩阵的多种范数,如L1范数、L2范数、无穷范数等。1.函数签名torch.norm(input,p='fro',dim=None,keepdim=False,dtype=None,out=None)input:需要计算范数的输入张量。p:范数
- TypeError: list indices must be integers or slices, not list
m0_68138877
pytorchlist
TypeError:listindicesmustbeintegersorslices,notlist原因:传入参数搞错了计划通过一个下标list,通过rand.shuffle实现训练数据的随机化,结果因为传入的数据是没有tokenized的(就是一堆原始的字符串,并且是用list保存的,tokenize之后应该是一个torch.tensor类型的张量)修复方法:对应原因,传入正确的参数即可总结:
- 【PyTorch】PyTorch中的方法torch.randperm()介绍
读思辨
PyTorchpytorch人工智能python
在PyTorch中,torch.randperm(n)函数用于生成一个从0到n-1的随机排列的整数序列。这个函数是非常有用的,尤其是在需要随机打乱数据或索引时,比如在训练机器学习模型时打乱数据顺序,以确保模型训练的泛化能力。参数n(int):输出张量的长度,即最大的数字为n-1。返回值返回一个一维张量,包含了从0到n-1的随机排列。使用示例下面是一个基本的使用示例,展示了如何使用torch.ran
- pytorch torch.einsum函数介绍
qq_27390023
pytorch人工智能python
torch.einsum是PyTorch中一个强大且灵活的张量运算函数,基于爱因斯坦求和约定进行操作。它允许用户通过简单的字符串表达式来定义复杂的张量运算,代替显式的循环或多个矩阵乘法操作。函数签名torch.einsum(equation,*operands)→Tensor参数equation:一个字符串,描述了张量间的操作关系。它使用爱因斯坦求和约定,用逗号分隔不同张量的索引,使用箭头(->)
- pytorch tensor.expand函数介绍
qq_27390023
pytorch人工智能python
在PyTorch中,tensor.expand()是一个用于扩展张量维度的函数。一、函数作用它允许你在不复制数据的情况下,将张量的形状扩展到指定的维度大小。这对于需要在特定维度上重复数据的操作非常有用,例如在进行广播操作时调整张量的形状。二、函数语法tensor.expand(*sizes)其中,*sizes是一个可变参数,表示要扩展到的目标形状。可以传入整数或整数序列来指定每个维度的大小。三、使
- 深度学习之深度学习框架——Tensorflow
只求毕业
目录Tensorflow框架Tensorflow的特点Tensorflow基础Tensorflow的编程习惯Tensorflow的设计基本思想Tensorflow进阶图创一个新的图——tf.Graph()op有哪些会话会话的run()方法张量张量的阶张量的数据类型张量的属性张量的静态形状和动态形状张量操作——生成张量张量操作——张量变换Tensorflow框架Tensorflow的特点Tensor
- pytorch torch.squeeze函数介绍
qq_27390023
pytorch深度学习人工智能
在PyTorch中,torch.squeeze(input,dim=None)函数用于去除张量中尺寸为1的维度。一、函数参数input:输入张量。dim:若指定了该参数,只有当给定维度的尺寸为1时才会去除该维度。如果该维度的尺寸不为1,则张量不会发生变化。如果不指定该参数,则去除所有尺寸为1的维度。二、使用示例importtorch#创建一个三维张量,其中有一个维度的尺寸为1tensor=torc
- pytorch view 函数介绍
qq_27390023
pytorch人工智能python
view是PyTorch中用于改变张量形状(tensorshape)的函数。与其他形状转换操作不同的是,view并不改变张量的数据,而是返回一个新的张量,该张量与原始数据共享内存。1.基本用法view的作用是将一个张量重新排列成新的形状。它的基本语法是:tensor.view(shape)shape:新张量的形状,可以是整数或一个整数元组。shape中的某一个维度可以是-1,表示该维度的大小由张量
- pytorch中的nn.MSELoss()均方误差损失函数
AndrewPerfect
深度学习python基础pytorch基础pytorch人工智能python
一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量,表示两个张量之间的均方误差。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方
- PyTorch库学习之torch.nn.functional.interpolate(函数)
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.nn.functional.interpolate(函数)一、简介torch.nn.functional.interpolate是PyTorch中用于对张量进行上采样或下采样的函数。它支持多种插值方法,例如双线性插值、最近邻插值等,广泛用于图像处理、特征图缩放等场景。二、语法和参数语法torch.nn.functional.interpolate(input,si
- PyTorch库学习之torch.repeat_interleave函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.repeat_interleave函数一、简介torch.repeat_interleave是PyTorch库中的一个函数,它用于重复张量中的元素。这个函数可以沿着指定的维度重复张量中的每个元素,返回一个新的张量。当不指定维度时,会将输入张量展平,并重复每个元素。这个函数在处理序列数据或生成数据增强样本时非常有用。二、语法和参数语法:torch.repeat_in
- TensorFlow 的基本概念和使用场景。
WangLinXX
学习tensorflow人工智能python
TensorFlow是由Google开发的开源机器学习框架,用于构建和训练各种机器学习模型。它基于数据流图的概念,其中节点表示数学操作,边表示多维数组(张量)的流动。TensorFlow的基本概念包括:1.张量(Tensors):在TensorFlow中,数据以张量的形式表示。它们是多维数组,可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。2.数据流图(DataFlowGraph)
- Bert中文预训练模型(Bert-base-chinese)
好好学习Py
自然语言处理bert人工智能深度学习pytorchpython自然语言处理
介绍Bert-base-chinese模型是一个在简体和繁体中文文本上训练得到的预训练模型,具有以下特点:12个隐层输出768维张量12个自注意力头110M参数量该模型的主要作用是获取每个汉字的向量表示,后续通过微调可应用于各种简体和繁体中文任务。使用importtorchfromtransformersimportBertTokenizer,BertModel#第一步:离线下载#fromtran
- 昇思25天学习打卡
十分钟ll
昇思25天学习打卡pythonpytorch视觉检测图像处理
@[TOC]《昇思25天学习打卡营第02天|lulul》张量Tensor张量tensor是在机器学习和深度学习中广泛应用的数据概念,张量是多维数组的泛化,能够表示标量(0维张量)、向量(1维张量)、矩阵(2维张量)及更高维的数组。张量基本用法(mindspore)data=[1,0,1,0]x_data=Tensor(data)print(x_data,x_data.shape,x_data.dt
- 动手学深度学习(pytorch)学习记录21-读写文件(模型与参数)[学习记录]
walfar
pytorch深度学习pytorch学习
目录加载和保存张量加载和保存模型参数保存模型的好处众多,涵盖了从开发到部署的整个机器学习生命周期。节省资源:训练模型可能需要大量的时间和计算资源。保存模型可以避免重复训练,从而节省时间和计算资源。快速部署:一旦模型被训练并保存,它可以迅速部署到生产环境中,加速产品上市时间。版本控制:保存不同版本的模型有助于跟踪模型的迭代过程,便于比较和回滚到之前的版本。离线使用:保存的模型可以在没有网络连接的情况
- PyTorch 基础学习
花千树-010
大讨论pytorch学习人工智能
文章索引:PyTorch基础学习(1)-快速入门PyTorch基础学习(2)-张量TensorsPyTorch基础学习(3)-张量的数学操作PyTorch基础学习(4)-张量的类型PyTorch基础学习(5)-神经网络PyTorch基础学习(6)-函数APIPyTorch基础学习(7)-自动微分PyTorch基础学习(8)-多进程并发PyTorch基础学习(9)-训练优化器PyTorch基础学习(
- 深入理解PyTorch中的`torch.topk`函数!!!(个人总结,为了方便我自己复习,要是同时也能帮助到大家就更好了)
小桥流水---人工智能
人工智能深度学习机器学习算法pytorch人工智能python
torch.topk深入理解PyTorch中的`torch.topk`函数1.`torch.topk`函数概述函数签名返回值2.基本用法示例1:找到一维张量的最大值示例2:在二维张量的指定维度上操作3.高级应用4.结论深入理解PyTorch中的torch.topk函数在深度学习和数据处理中,经常需要对数据进行排序并提取最重要的部分。PyTorch提供了一个非常有用的函数torch.topk,它能够
- 在 PyTorch 中,`permute` 方法是一个强大的工具,用于重排张量的维度。
小桥流水---人工智能
人工智能机器学习算法深度学习pytorch人工智能python
在PyTorch中,permute方法是一个强大的工具,用于重排张量的维度。这在深度学习中非常有用,尤其是在处理具有多维数据(如图像、视频或复杂数组)的神经网络时。PyTorch中的permute方法详解1.permute方法概述在PyTorch中,permute方法允许用户重新排列张量的维度。这与NumPy的transpose方法类似,但提供了更灵活的多维重排能力。该方法非常有用,例如,当你需要
- PyTorch概述
fydw_715
pytorchpytorch人工智能python
PyTorch是一个开源的机器学习框架,由Facebook的人工智能研究团队开发。它广泛用于深度学习和神经网络的研究和开发。PyTorch以其动态计算图、灵活性和简单易用的接口而闻名,深受研究人员和开发者的喜爱。以下是PyTorch的一些重要模块及其功能:torch简介:这是PyTorch的核心库,提供了张量(tensor)操作的基本功能。功能:支持张量的创建、操作和转换,涵盖数学运算、线性代数操
- PyTorch库学习之torch.mean函数
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.mean函数一、简介torch.mean是PyTorch库中的一个函数,用于计算张量的均值。它可以沿着指定的维度或者整个张量计算均值,是数据分析和机器学习中常用的操作之一。二、语法和参数语法:torch.mean(input,dim=None,keepdim=False,*,out=None)参数:input(torch.Tensor):输入张量。dim(int,
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开