- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- 深度解析DeepSeek大模型的技术架构与创新点
程序员
大家好,我是一名DeepSeek大模型研究者,今天我想和大家分享一下DeepSeek大模型的核心技术架构和创新特点。作为国内领先的开源大模型,DeepSeek在架构设计和技术创新上都有其独特之处。让我们一起来揭开它的神秘面纱!一、基础架构概览DeepSeek的核心架构建立在Transformer的基础上,但进行了多项创新优化。我第一次接触DeepSeek时,就被它在模型结构上的精巧设计所吸引。1.
- deepseek+python,离线api,持续对话
守着黎明看日出
python
功能:通过start开启新对话,stop结束对话,exit退出程序,并且可持续对话代码fromtransformersimportAutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfigimporttorch#导入torch模块#配置4-bit量化quantization_config=BitsAndBytesConfig(load_in_4bit
- 清华大学KVCache.AI团队联合趋境科技联合的KTransformers开源项目为什么那么厉害
魔王阿卡纳兹
IT杂谈人工智能科技开源清华DeepSeek趋境科技KTransformers
KTransformers是一个由清华大学KVAV.AI团队开发的开源项目,旨在优化大语言模型(LLM)的推理性能,特别是在有限显存资源下运行大型模型。以下是KTransformers的详细介绍:1.核心特点高性能优化:KTransformers通过内核级优化、多GPU并行策略和稀疏注意力等技术,显著加速模型推理速度,降低硬件门槛。灵活扩展性:KTransformers是一个以Python为中心的
- Transformer
AI专题精讲
深度学习transformer深度学习自然语言处理
1.TransformerTransformer是一种新的、基于attention机制来实现的特征提取器,可用于代替CNN和RNN来提取序列的特征。Transformer首次由论文《AttentionIsAllYouNeed》提出,在该论文中Transformer用于encoder-decoder架构。事实上Transformer可以单独应用于encoder或者单独应用于decoder。Trans
- Transformer以及BERT阅读参考博文
mumukehao
文本属性图文本属性图
Transformer以及BERT阅读参考博文Transformer学习:已有博主的讲解特别好了:李沐:Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili知乎:Transformer模型详解(图解最完整版)-知乎个人杂想:QKT∗VQK^{T}*VQKT∗V中,QKTQK^TQKT其实可以理解为相似性矩阵S,那么S∗VS*VS∗V其实就相当于相似性矩阵对原始的嵌入加权求和。
- ZCC6507: A Superior Isolated Power Solution Outperforming SN6507
zhichengwei
其他
Inthefieldofisolatedpowerdesign,engineersareconstantlyseekingmoreefficient,flexible,andcost-effectivesolutions.TheZCC6507,ahigh-performancepush-pulltransformerdriver,standsoutwithitsuniquedesignandsig
- 23. AI-大语言模型
真上帝的左手
23.AI人工智能语言模型自然语言处理
文章目录前言一、LLM1.简介2.工作原理和结构3.应用场景4.最新研究进展5.比较二、Transformer架构1.简介2.基本原理和结构3.应用场景4.最新进展三、开源1.开源概念2.开源模式3.模型权重四、再谈DeepSeek前言AI一、LLMLLM(LargeLanguageModel,大语言模型)1.简介 LLM(LargeLanguageModel,大语言模型)是指使用大量文本
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- 用java实现word(docx)转换为pdf格式文档(简单版)
xiaoxiaobaozhu
javawordpdf
导入依赖com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-word1.0.3代码//word文档替换成pdf文档privatestaticvoidreplaceWordToPdf(StringwordPath,StringpdfPath){FileinputWord=newFil
- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 海思Hi3516CV610 -----芯片说明
菩提树下的凡夫
嵌入式Linux系统开发c++c语言
Hi3516CV610这颗超高清智慧视觉SoC芯片是由海思技术有限公司推出的,其首发量产的时间是在2024年4。标志着海思正式回归安防市场,并在IPCSoC市场中展开竞争。关键特性●4K@20,6M@30分辨率●双目实时接入,支撑枪球一体机等双目机型●1T算力NPU,Transformer特性加速,大模型端侧部署●SVAC3.0编码标准,压缩率提升20%●智能编码2.0,像素升级,存储不加量,4M
- 上下文扩展技术-详细解释Longformer和BigBird的主要创新;详细说明bert原理,并说一说他的上下文限制是怎么来的
AI生成曾小健
人工智能
答案LongformerLongformer是为有效处理长文本序列而设计的Transformer模型,它通过结合滑动窗口注意力机制和扩张注意力模式来捕捉局部和远距离的上下文信息,并通过全局注意力来捕捉整个文档的广泛背景和联系1.Keyinnovations:滑动窗口注意力Longformer使用滑动窗口方法处理本地上下文信息1.扩张注意力模式扩张注意力模式能够捕捉到远处的上下文信息,这对于处理冗长
- 视觉中的transformer:ViT
ch隔壁老张
深度学习笔记transformer深度学习计算机视觉
《》摘要transformer已经是NLP的标准。但是在cv领域用的很少,视觉里一般是和cnn一起用或者把某些conv替换成transformer(整体还是CNN)本篇文章证明纯的transformer直接在图片分类上也做得很好:在大量数据集上进行预训练的前提上,迁移到小数据集(作者说ImageNet是小数据集-_-)上也很好。Intro启发现在NLP里的transformer都是在大量数据集上进
- ViT和Transformer
Landon9
transformer深度学习人工智能
AttentionIsAllYouNeedVit在图像领域直接使用transformer,如果将2d图像直接转为一维向量,会面临参数两过大的问题。后来会思考在卷积之后再使用transformer,例如resNet50模型中,最后一层仅为14×14大小的矩阵。而本文是直接采用transformer模型,只需要对图片做一下预处理。ViT是将图像分为多个16×16的patch一张图像可以被分成多个小的图
- 详细说说VIT架构和Transformer架构的异同
AI生成曾小健
大模型LLM面试指南多模态MLLM大模型面试指南架构transformer深度学习
GPT-4oVisionTransformer(ViT)和Transformer架构之间的关系非常紧密,因为ViT是直接将Transformer应用到视觉任务中的一种方法。不过,由于图像数据与自然语言数据的特性不同,ViT在实现上对标准Transformer架构做了一些调整。以下是ViT和Transformer架构的异同点详细分析:1.Transformer架构的回顾Transformer是一种用
- 从VGG到Transformer:深度神经网络层级演进对模型性能的深度解析与技术实践指南
燃灯工作室
Aitransformerdnn深度学习
一、技术原理(数学公式+示意图)1.层深与模型容量关系数学表达:根据UniversalApproximationTheorem,深度网络可表达复杂函数:f(x)=fL(fL−1(⋯f1(x)))f(x)=f_L(f_{L-1}(\cdotsf_1(x)))f(x)=fL(fL−1(⋯f1(x)))层数L增加时,函数空间指数级扩大梯度传播挑战:链式法则导致梯度消失/爆炸∂L∂W(1)=∏k=2L∂f
- 计算机视觉核心任务
飞瀑
AIyolo
1.计算机视频重要分类计算机视觉的重要任务可以大致分为以下几类:1.图像分类(ImageClassification)识别图像属于哪个类别,例如猫、狗、汽车等。应用场景:物品识别、人脸识别、医疗影像分类。代表模型:ResNet、EfficientNet、ViT(VisionTransformer)。2.目标检测(ObjectDetection)识别图像中目标的位置(边界框)及类别。应用场景:自动驾
- 【Transformer】小白入门指南
静静喜欢大白
随记医疗影像transformer深度学习人工智能
目录1、简介2、Transformer解决问题技术概览核心组成自注意力机制(Self-AttentionMechanism)多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNeuralNetwork)位置编码(PositionalEncoding)残差连接与标准化框架认识1.输入输出2.Encoder3.Decoder4.训练过程5.Positione
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
Ash Butterfield
nlpgptchatgpt
从GPT到ChatGPT,OpenAI用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史!GPT(2018):划时代的起点:GPT(GenerativePre-trainedTransformer)首次将Transformer架构与无监督预训练结合,开启了大规模语言模型的新时代。核心突破:通过海量文本预训练+任务微调,GPT展示了强大的泛化能力。GPT-
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- Pytorch实现一个简单DeepSeek中的MLA多头潜在注意力架构
DukeYong
DeepSeek
首先,MLA是什么?可能是指Multi-HeadLocalAttention,即多头局部注意力,这种机制通常用于减少计算量,特别是在处理长序列时,每个头只关注局部区域。比如每个token只注意其周围的一定窗口内的其他token,而不是全局。这可能与传统的Transformer中的滑动窗口或局部注意力类似。接下来,我需要考虑如何将局部注意力与多头机制结合。每个注意力头可能有不同的局部窗口,或者共享相
- 值得收藏!十大中国流行的AI大模型企业及平台汇总
deepseek大模型
人工智能AIGCchatgpt面试产品经理
在当今这个信息化迅速发展的时代,人工智能技术已经成为推动社会进步的重要力量。特别是在我国,AI大模型技术的发展速度令人瞩目,各种平台纷纷涌现,表现出强大的技术实力和广泛的应用前景。本文将为您介绍当前目前我国十个流行的AI大模型企业及各自平台(根据用户访问流量及行业反馈情况),下面一起来看看吧!1.百度-文心一言百度在大模型开发上持续采用创新算法和结构,如Transformer,以优化模型性能和学习
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&