分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow
也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!
#include "stdafx.h"#include "cv.h"#include "highgui.h"#include #include using namespace std; int main(){ int cube_length=7; CvCapture* capture; capture=cvCreateCameraCapture(0); if(capture==0){ printf("无法捕获摄像头设备!\n\n"); return 0; }else{ printf("捕获摄像头设备成功!!\n\n"); } IplImage* frame; cvNamedWindow("摄像机帧截取窗口",1); //cvNamedWindow()函数用于在屏幕上创建一个窗口,将被显示的图像包含于该窗口中。函数的第一个参数指定了该窗口的窗口标题,如果要使用HighGUI库所提供的其他函数与该窗口进行交互时,我们将通过该参数值引用这个窗口。 printf("按“C”键截取当前帧并保存为标定图片...\n按“Q”键退出截取帧过程...\n\n"); int number_image=1; char *str1; str1=".jpg"; char filename[20]=""; while(true) { frame=cvQueryFrame(capture);// 从摄像头或者文件中抓取并返回一帧 if(!frame) break; cvShowImage("摄像机帧截取窗口",frame); //图像显示 if(cvWaitKey(10)=='c'){ sprintf_s (filename,"%d.jpg",number_image); // int sprintf_s( char *buffer, size_t sizeOfBuffer, const char *format [, argument] ... );这个函数的主要作用是将若干个argument按照format格式存到buffer中 cvSaveImage(filename,frame);//保存 cout<<"成功获取当前帧,并以文件名"<"保存...\n\n"; printf("按“C”键截取当前帧并保存为标定图片...\n按“Q”键退出截取帧过程...\n\n"); number_image++; }else if(cvWaitKey(10)=='q'){ printf("截取图像帧过程完成...\n\n"); cout<<"共成功截取"<<--number_image<<"帧图像!!\n\n"; break; } } cvReleaseImage(&frame); //释放图像 cvDestroyWindow("摄像机帧截取窗口"); IplImage * show; cvNamedWindow("RePlay",1); int a=1; int number_image_copy=number_image; CvSize board_size=cvSize(7,7); // Cvsizes:OpenCV的基本数据类型之一。表示矩阵框大小,以像素为精度。与CvPoint结构类似,但数据成员是integer类型的width和height。//cvSize是 int board_width=board_size.width; int board_height=board_size.height; int total_per_image=board_width*board_height; CvPoint2D32f * image_points_buf = new CvPoint2D32f[total_per_image]; CvMat * image_points=cvCreateMat(number_image*total_per_image,2,CV_32FC1);//图像坐标系 CvMat * object_points=cvCreateMat(number_image*total_per_image,3,CV_32FC1);//世界坐标系 CvMat * point_counts=cvCreateMat(number_image,1,CV_32SC1);// CvMat * intrinsic_matrix=cvCreateMat(3,3,CV_32FC1);// CvMat * distortion_coeffs=cvCreateMat(5,1,CV_32FC1); int count; int found; int step; int successes=0; while(a<=number_image_copy){ sprintf_s (filename,"%d.jpg",a); show=cvLoadImage(filename,-1); found=cvFindChessboardCorners(show,board_size,image_points_buf,&count, CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS); if(found==0){ cout<<"第"<"帧图片无法找到棋盘格所有角点!\n\n"; cvNamedWindow("RePlay",1); cvShowImage("RePlay",show); cvWaitKey(0); }else{ cout<<"第"<"帧图像成功获得"<"个角点...\n"; cvNamedWindow("RePlay",1); IplImage * gray_image= cvCreateImage(cvGetSize(show),8,1); //创建头并分配数据IplImage* cvCreateImage( CvSize size, int depth, int channels ); depth 图像元素的位深度 cvCvtColor(show,gray_image,CV_BGR2GRAY); // cvCvtColor(...),是Opencv里的颜色空间转换函数,可以实现rgb颜色向HSV,HSI等颜色空间的转换,也可以转换为灰度图像。 cout<<"获取源图像灰度图过程完成...\n"; cvFindCornerSubPix(gray_image,image_points_buf,count,cvSize(11,11),cvSize(-1,-1),由于非常接近P的像素产生了很小的特征值,所以这个自相关矩阵并不总是可逆的。为了解决这个问题,一般可以简单地剔除离P点非常近的像素。输入参数:ero_zone定义了一个禁区(与win相似,但通常比win小),这个区域在方程组以及自相关矩阵中不被考虑。如果不需要这样一个禁区,则zero_zone应设置为cvSize(-1,-1)0 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1)); cout<<"灰度图亚像素化过程完成...\n"; cvDrawChessboardCorners(show,board_size,image_points_buf,count,found); cout<<"在源图像上绘制角点过程完成...\n\n"; cvShowImage("RePlay",show); cvWaitKey(0); } if(total_per_image==count){ step=successes*total_per_image; for(int i=step,j=0;jfloat,i,0)=image_points_buf[j].x; // opencv中用来访问矩阵每个元素的宏,这个宏只对单通道矩阵有效,多通道CV_MAT_ELEM( matrix, elemtype, row, col )参数 matrix:要访问的矩阵 elemtype:矩阵元素的类型 row:所要访问元素的行数 col:所要访问元素的列数 CV_MAT_ELEM(*image_points,float,i,1)=image_points_buf[j].y;// 求完每个角点横纵坐标值都存在image_point_buf里 CV_MAT_ELEM(*object_points,float,i,0)=(float)(j/cube_length); CV_MAT_ELEM(*object_points,float,i,1)=(float)(j%cube_length); CV_MAT_ELEM(*object_points,float,i,2)=0.0f; } CV_MAT_ELEM(*point_counts,int,successes,0)=total_per_image; successes++; } a++; } cvReleaseImage(&show); cvDestroyWindow("RePlay"); cout<<"*********************************************\n"; cout<"帧图片中,标定成功的图片为"<"帧...\n"; cout<"帧图片中,标定失败的图片为"<"帧...\n\n"; cout<<"*********************************************\n\n"; cout<<"按任意键开始计算摄像机内参数...\n\n"; CvCapture* capture1; capture1=cvCreateCameraCapture(0); IplImage * show_colie; show_colie=cvQueryFrame(capture1); CvMat * object_points2=cvCreateMat(successes*total_per_image,3,CV_32FC1); // OpenCV 中重要的矩阵变换函数,使用方法为cvMat* cvCreateMat ( int rows, int cols, int type ); 这里type可以是任何预定义类型,预定义类型的结构如下:CV_ (S|U|F)C。 CvMat * image_points2=cvCreateMat(successes*total_per_image,2,CV_32FC1); CvMat * point_counts2=cvCreateMat(successes,1,CV_32SC1);for(int i=0;ifloat,i,0)=CV_MAT_ELEM(*image_points,float,i,0);//用来存储角点提取成功的图像的角点 CV_MAT_ELEM(*image_points2,float,i,1)=CV_MAT_ELEM(*image_points,float,i,1); CV_MAT_ELEM(*object_points2,float,i,0)=CV_MAT_ELEM(*object_points,float,i,0); CV_MAT_ELEM(*object_points2,float,i,1)=CV_MAT_ELEM(*object_points,float,i,1); CV_MAT_ELEM(*object_points2,float,i,2)=CV_MAT_ELEM(*object_points,float,i,2); } for(int i=0;iint,i,0)=CV_MAT_ELEM(*point_counts,int,i,0); } cvReleaseMat(&object_points); cvReleaseMat(&image_points); cvReleaseMat(&point_counts); CV_MAT_ELEM(*intrinsic_matrix,float,0,0)=1.0f; CV_MAT_ELEM(*intrinsic_matrix,float,1,1)=1.0f; cvCalibrateCamera2(object_points2,image_points2,point_counts2,cvGetSize(show_colie), intrinsic_matrix,distortion_coeffs,NULL,NULL,0); cout<<"摄像机内参数矩阵为:\n"; cout<float,0,0)<<" "<float,0,1) <<" "<float,0,2) <<"\n\n"; cout<float,1,0)<<" "<float,1,1) <<" "<float,1,2) <<"\n\n"; cout<float,2,0)<<" "<float,2,1) <<" "<float,2,2) <<"\n\n"; cout<<"畸变系数矩阵为:\n"; cout<float,0,0)<<" "<float,1,0) <<" "<float,2,0) <<" "<float,3,0) <<" "<float,4,0) <<"\n\n"; cvSave("Intrinsics.xml",intrinsic_matrix); cvSave("Distortion.xml",distortion_coeffs); cout<<"摄像机矩阵、畸变系数向量已经分别存储在名为Intrinsics.xml、Distortion.xml文档中\n\n"; CvMat * intrinsic=(CvMat *)cvLoad("Intrinsics.xml"); CvMat * distortion=(CvMat *)cvLoad("Distortion.xml"); IplImage * mapx=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1); IplImage * mapy=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1); cvInitUndistortMap(intrinsic,distortion,mapx,mapy); cvNamedWindow("原始图像",1); cvNamedWindow("非畸变图像",1); cout<<"按‘E’键退出显示...\n\n"; while(show_colie){ IplImage * clone=cvCloneImage(show_colie); cvShowImage("原始图像",show_colie); cvRemap(clone,show_colie,mapx,mapy); cvReleaseImage(&clone); cvShowImage("非畸变图像",show_colie); if(cvWaitKey(10)=='e'){ break; } show_colie=cvQueryFrame(capture1); } return 0;}